Nimrod Manual

Authors: Andreas Rumpf, Zahary Karadjov
Version: 0.9.5

"Complexity" seems to be a lot like "energy": you can transfer it from the end user to one/some of the other players, but the total amount seems to remain pretty much constant for a given task. -- Ran

About this document

Note: This document is a draft! Several of Nimrod's features need more precise wording. This manual will evolve into a proper specification some day.

This document describes the lexis, the syntax, and the semantics of Nimrod.

The language constructs are explained using an extended BNF, in which (a)* means 0 or more a's, a+ means 1 or more a's, and (a)? means an optional a. Parentheses may be used to group elements.

& is the lookahead operator; &a means that an a is expected but not consumed. It will be consumed in the following rule.

The |, / symbols are used to mark alternatives and have the lowest precedence. / is the ordered choice that requires the parser to try the alternatives in the given order. / is often used to ensure the grammar is not ambiguous.

Non-terminals start with a lowercase letter, abstract terminal symbols are in UPPERCASE. Verbatim terminal symbols (including keywords) are quoted with '. An example:

ifStmt = 'if' expr ':' stmts ('elif' expr ':' stmts)* ('else' stmts)?

The binary ^* operator is used as a shorthand for 0 or more occurances separated by its second argument; likewise ^+ means 1 or more occurances: a ^+ b is short for a (b a)* and a ^* b is short for (a (b a)*)?. Example:

arrayConstructor = '[' expr ^* ',' ']'

Other parts of Nimrod - like scoping rules or runtime semantics are only described in an informal manner for now.

Definitions

A Nimrod program specifies a computation that acts on a memory consisting of components called locations. A variable is basically a name for a location. Each variable and location is of a certain type. The variable's type is called static type, the location's type is called dynamic type. If the static type is not the same as the dynamic type, it is a super-type or subtype of the dynamic type.

An identifier is a symbol declared as a name for a variable, type, procedure, etc. The region of the program over which a declaration applies is called the scope of the declaration. Scopes can be nested. The meaning of an identifier is determined by the smallest enclosing scope in which the identifier is declared unless overloading resolution rules suggest otherwise.

An expression specifies a computation that produces a value or location. Expressions that produce locations are called l-values. An l-value can denote either a location or the value the location contains, depending on the context. Expressions whose values can be determined statically are called constant expressions; they are never l-values.

A static error is an error that the implementation detects before program execution. Unless explicitly classified, an error is a static error.

A checked runtime error is an error that the implementation detects and reports at runtime. The method for reporting such errors is via raising exceptions or dying with a fatal error. However, the implementation provides a means to disable these runtime checks. See the section pragmas for details.

Wether a checked runtime error results in an exception or in a fatal error at runtime is implementation specific. Thus the following program is always invalid:

var a: array[0..1, char]
let i = 5
try:
  a[i] = 'N'
except EInvalidIndex:
  echo "invalid index"

An unchecked runtime error is an error that is not guaranteed to be detected, and can cause the subsequent behavior of the computation to be arbitrary. Unchecked runtime errors cannot occur if only safe language features are used.

Lexical Analysis

Encoding

All Nimrod source files are in the UTF-8 encoding (or its ASCII subset). Other encodings are not supported. Any of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return) character. All of these forms can be used equally, regardless of platform.

Indentation

Nimrod's standard grammar describes an indentation sensitive language. This means that all the control structures are recognized by indentation. Indentation consists only of spaces; tabulators are not allowed.

The indentation handling is implemented as follows: The lexer annotates the following token with the preceding number of spaces; indentation is not a separate token. This trick allows parsing of Nimrod with only 1 token of lookahead.

The parser uses a stack of indentation levels: the stack consists of integers counting the spaces. The indentation information is queried at strategic places in the parser but ignored otherwise: The pseudo terminal IND{>} denotes an indentation that consists of more spaces than the entry at the top of the stack; IND{=} an indentation that has the same number of spaces. DED is another pseudo terminal that describes the action of popping a value from the stack, IND{>} then implies to push onto the stack.

With this notation we can now easily define the core of the grammar: A block of statements (simplified example):

ifStmt = 'if' expr ':' stmt
         (IND{=} 'elif' expr ':' stmt)*
         (IND{=} 'else' ':' stmt)?

simpleStmt = ifStmt / ...

stmt = IND{>} stmt ^+ IND{=} DED  # list of statements
     / simpleStmt                 # or a simple statement

Comments

Comments start anywhere outside a string or character literal with the hash character #. Comments consist of a concatenation of comment pieces. A comment piece starts with # and runs until the end of the line. The end of line characters belong to the piece. If the next line only consists of a comment piece which is aligned to the preceding one, it does not start a new comment:

i = 0     # This is a single comment over multiple lines belonging to the
          # assignment statement. The scanner merges these two pieces.
# This is a new comment belonging to the current block, but to no particular
# statement.
i = i + 1 # This a new comment that is NOT
echo(i)   # continued here, because this comment refers to the echo statement

The alignment requirement does not hold if the preceding comment piece ends in a backslash (followed by optional whitespace):

type
  TMyObject {.final, pure, acyclic.} = object  # comment continues: \
    # we have lots of space here to comment 'TMyObject'.
    # This line belongs to the comment as it's properly aligned.

Comments are tokens; they are only allowed at certain places in the input file as they belong to the syntax tree! This feature enables perfect source-to-source transformations (such as pretty-printing) and superior documentation generators. A nice side-effect is that the human reader of the code always knows exactly which code snippet the comment refers to.

Identifiers & Keywords

Identifiers in Nimrod can be any string of letters, digits and underscores, beginning with a letter. Two immediate following underscores __ are not allowed:

letter ::= 'A'..'Z' | 'a'..'z' | '\x80'..'\xff'
digit ::= '0'..'9'
IDENTIFIER ::= letter ( ['_'] (letter | digit) )*

Currently any unicode character with an ordinal value > 127 (non ASCII) is classified as a letter and may thus be part of an identifier but later versions of the language may assign some Unicode characters to belong to the operator characters instead.

The following keywords are reserved and cannot be used as identifiers:

addr and as asm atomic
bind block break
case cast const continue converter
discard distinct div do
elif else end enum except export
finally for from
generic
if import in include interface is isnot iterator
lambda let
macro method mixin mod
nil not notin
object of or out
proc ptr
raise ref return
shl shr static
template try tuple type
using
var
when while with without
xor
yield

Some keywords are unused; they are reserved for future developments of the language.

Nimrod is a style-insensitive language. This means that it is not case-sensitive and even underscores are ignored: type is a reserved word, and so is TYPE or T_Y_P_E. The idea behind this is that this allows programmers to use their own preferred spelling style and libraries written by different programmers cannot use incompatible conventions. A Nimrod-aware editor or IDE can show the identifiers as preferred. Another advantage is that it frees the programmer from remembering the exact spelling of an identifier.

String literals

Terminal symbol in the grammar: STR_LIT.

String literals can be delimited by matching double quotes, and can contain the following escape sequences:

Escape sequenceMeaning
\nnewline
\r, \ccarriage return
\lline feed
\fform feed
\ttabulator
\vvertical tabulator
\\backslash
\"quotation mark
\'apostrophe
\ '0'..'9'+character with decimal value d; all decimal digits directly following are used for the character
\aalert
\bbackspace
\eescape [ESC]
\x HHcharacter with hex value HH; exactly two hex digits are allowed

Strings in Nimrod may contain any 8-bit value, even embedded zeros. However some operations may interpret the first binary zero as a terminator.

Triple quoted string literals

Terminal symbol in the grammar: TRIPLESTR_LIT.

String literals can also be delimited by three double quotes """ ... """. Literals in this form may run for several lines, may contain " and do not interpret any escape sequences. For convenience, when the opening """ is followed by a newline (there may be whitespace between the opening """ and the newline), the newline (and the preceding whitespace) is not included in the string. The ending of the string literal is defined by the pattern """[^"], so this:

""""long string within quotes""""

Produces:

"long string within quotes"

Raw string literals

Terminal symbol in the grammar: RSTR_LIT.

There are also raw string literals that are preceded with the letter r (or R) and are delimited by matching double quotes (just like ordinary string literals) and do not interpret the escape sequences. This is especially convenient for regular expressions or Windows paths:

var f = openFile(r"C:\texts\text.txt") # a raw string, so ``\t`` is no tab

To produce a single " within a raw string literal, it has to be doubled:

r"a""b"

Produces:

a"b

r"""" is not possible with this notation, because the three leading quotes introduce a triple quoted string literal. r""" is the same as """ since triple quoted string literals do not interpret escape sequences either.

Generalized raw string literals

Terminal symbols in the grammar: GENERALIZED_STR_LIT, GENERALIZED_TRIPLESTR_LIT.

The construct identifier"string literal" (without whitespace between the identifier and the opening quotation mark) is a generalized raw string literal. It is a shortcut for the construct identifier(r"string literal"), so it denotes a procedure call with a raw string literal as its only argument. Generalized raw string literals are especially convenient for embedding mini languages directly into Nimrod (for example regular expressions).

The construct identifier"""string literal""" exists too. It is a shortcut for identifier("""string literal""").

Character literals

Character literals are enclosed in single quotes '' and can contain the same escape sequences as strings - with one exception: newline (\n) is not allowed as it may be wider than one character (often it is the pair CR/LF for example). Here are the valid escape sequences for character literals:

Escape sequenceMeaning
\r, \ccarriage return
\lline feed
\fform feed
\ttabulator
\vvertical tabulator
\\backslash
\"quotation mark
\'apostrophe
\ '0'..'9'+character with decimal value d; all decimal digits directly following are used for the character
\aalert
\bbackspace
\eescape [ESC]
\x HHcharacter with hex value HH; exactly two hex digits are allowed

A character is not an Unicode character but a single byte. The reason for this is efficiency: for the overwhelming majority of use-cases, the resulting programs will still handle UTF-8 properly as UTF-8 was specially designed for this. Another reason is that Nimrod can thus support array[char, int] or set[char] efficiently as many algorithms rely on this feature. The TRune type is used for Unicode characters, it can represent any Unicode character. TRune is declared in the unicode module.

Numerical constants

Numerical constants are of a single type and have the form:

hexdigit = digit | 'A'..'F' | 'a'..'f'
octdigit = '0'..'7'
bindigit = '0'..'1'
HEX_LIT = '0' ('x' | 'X' ) hexdigit ( ['_'] hexdigit )*
DEC_LIT = digit ( ['_'] digit )*
OCT_LIT = '0o' octdigit ( ['_'] octdigit )*
BIN_LIT = '0' ('b' | 'B' ) bindigit ( ['_'] bindigit )*

INT_LIT = HEX_LIT
        | DEC_LIT
        | OCT_LIT
        | BIN_LIT

INT8_LIT = INT_LIT ['\''] ('i' | 'I') '8'
INT16_LIT = INT_LIT ['\''] ('i' | 'I') '16'
INT32_LIT = INT_LIT ['\''] ('i' | 'I') '32'
INT64_LIT = INT_LIT ['\''] ('i' | 'I') '64'

UINT8_LIT = INT_LIT ['\''] ('u' | 'U')
UINT8_LIT = INT_LIT ['\''] ('u' | 'U') '8'
UINT16_LIT = INT_LIT ['\''] ('u' | 'U') '16'
UINT32_LIT = INT_LIT ['\''] ('u' | 'U') '32'
UINT64_LIT = INT_LIT ['\''] ('u' | 'U') '64'

exponent = ('e' | 'E' ) ['+' | '-'] digit ( ['_'] digit )*
FLOAT_LIT = digit (['_'] digit)* (('.' (['_'] digit)* [exponent]) |exponent)
FLOAT32_LIT = HEX_LIT '\'' ('f'|'F') '32'
            | (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) ['\''] ('f'|'F') '32'
FLOAT64_LIT = HEX_LIT '\'' ('f'|'F') '64'
            | (FLOAT_LIT | DEC_LIT | OCT_LIT | BIN_LIT) ['\''] ('f'|'F') '64'

As can be seen in the productions, numerical constants can contain underscores for readability. Integer and floating point literals may be given in decimal (no prefix), binary (prefix 0b), octal (prefix 0o) and hexadecimal (prefix 0x) notation.

There exists a literal for each numerical type that is defined. The suffix starting with an apostrophe (''') is called a type suffix. Literals without a type suffix are of the type int, unless the literal contains a dot or E|e in which case it is of type float. For notational convenience the apostrophe of a type suffix is optional if it is not ambiguous (only hexadecimal floating point literals with a type suffix can be ambiguous).

The type suffixes are:

Type SuffixResulting type of literal
'i8int8
'i16int16
'i32int32
'i64int64
'uuint
'u8uint8
'u16uint16
'u32uint32
'u64uint64
'f32float32
'f64float64

Floating point literals may also be in binary, octal or hexadecimal notation: 0B0_10001110100_0000101001000111101011101111111011000101001101001001'f64 is approximately 1.72826e35 according to the IEEE floating point standard.

Operators

In Nimrod one can define his own operators. An operator is any combination of the following characters:

=     +     -     *     /     <     >
@     $     ~     &     %     |
!     ?     ^     .     :     \

These keywords are also operators: and or not xor shl shr div mod in notin is isnot of.

=, :, :: are not available as general operators; they are used for other notational purposes.

*: is as a special case the two tokens * and : (to support var v*: T).

Other tokens

The following strings denote other tokens:

`   (     )     {     }     [     ]     ,  ;   [.    .]  {.   .}  (.  .)

The slice operator .. takes precedence over other tokens that contain a dot: {..} are the three tokens {, .., } and not the two tokens {., .}.

Syntax

This section lists Nimrod's standard syntax. How the parser handles the indentation is already described in the Lexical Analysis section.

Nimrod allows user-definable operators. Binary operators have 10 different levels of precedence.

Relevant character

An operator symbol's relevant character is its first character unless the first character is \ and its length is greater than 1 then it is the second character.

This rule allows to escape operator symbols with \ and keeps the operator's precedence and associativity; this is useful for meta programming.

Associativity

Binary operators whose relevant character is ^ are right-associative, all other binary operators are left-associative.

Precedence

Unary operators always bind stronger than any binary operator: $a + b is ($a) + b and not $(a + b).

If an unary operator's relevant character is @ it is a sigil-like operator which binds stronger than a primarySuffix: @x.abc is parsed as (@x).abc whereas $x.abc is parsed as $(x.abc).

For binary operators that are not keywords the precedence is determined by the following rules:

If the operator ends with = and its relevant character is none of <, >, !, =, ~, ?, it is an assignment operator which has the lowest precedence.

Otherwise precedence is determined by the relevant character.

Precedence levelOperatorsRelevant characterTerminal symbol
9 (highest)$ ^OP9
8* / div mod shl shr %* % \ /OP8
7+ -+ ~ |OP7
6&&OP6
5...OP5
4== <= < >= > != in notin is isnot not of= < > !OP4
3andOP3
2or xorOP2
1@ : ?OP1
0 (lowest)assignment operator (like +=, *=)OP0

Strong spaces

The number of spaces preceeding a non-keyword operator affects precedence if the experimental parser directive #!strongSpaces is used. Indentation is not used to determine the number of spaces. If 2 or more operators have the same number of preceding spaces the precedence table applies, so 1 + 3 * 4 is still parsed as 1 + (3 * 4), but 1+3 * 4 is parsed as (1+3) * 4:

#! strongSpaces
if foo+4 * 4 == 8 and b&c | 9  ++
    bar:
  echo ""
# is parsed as
if ((foo+4)*4 == 8) and (((b&c) | 9) ++ bar): echo ""

Furthermore whether an operator is used a prefix operator is affected by the number of spaces:

#! strongSpaces
echo $foo
# is parsed as
echo($foo)

This also affects whether [], {}, () are parsed as constructors or as accessors:

#! strongSpaces
echo (1,2)
# is parsed as
echo((1,2))

Only 0, 1, 2, 4 or 8 spaces are allowed to specify precedence and it is enforced that infix operators have the same amount of spaces before and after them. This rules does not apply when a newline follows after the operator, then only the preceding spaces are considered.

Grammar

The grammar's start symbol is module.

module = stmt ^* (';' / IND{=})
comma = ',' COMMENT?
semicolon = ';' COMMENT?
colon = ':' COMMENT?
colcom = ':' COMMENT?

operator =  OP0 | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 | OP7 | OP8 | OP9
         | 'or' | 'xor' | 'and'
         | 'is' | 'isnot' | 'in' | 'notin' | 'of'
         | 'div' | 'mod' | 'shl' | 'shr' | 'not' | 'addr' | 'static' | '..'

prefixOperator = operator

optInd = COMMENT?
optPar = (IND{>} | IND{=})?

simpleExpr = assignExpr (OP0 optInd assignExpr)*
assignExpr = orExpr (OP1 optInd orExpr)*
orExpr = andExpr (OP2 optInd andExpr)*
andExpr = cmpExpr (OP3 optInd cmpExpr)*
cmpExpr = sliceExpr (OP4 optInd sliceExpr)*
sliceExpr = ampExpr (OP5 optInd ampExpr)*
ampExpr = plusExpr (OP6 optInd plusExpr)*
plusExpr = mulExpr (OP7 optInd mulExpr)*
mulExpr = dollarExpr (OP8 optInd dollarExpr)*
dollarExpr = primary (OP9 optInd primary)*
symbol = '`' (KEYW|IDENT|literal|(operator|'('|')'|'['|']'|'{'|'}'|'=')+)+ '`'
       | IDENT
indexExpr = expr
indexExprList = indexExpr ^+ comma
exprColonEqExpr = expr (':'|'=' expr)?
exprList = expr ^+ comma
dotExpr = expr '.' optInd ('type' | 'addr' | symbol)
qualifiedIdent = symbol ('.' optInd ('type' | 'addr' | symbol))?
exprColonEqExprList = exprColonEqExpr (comma exprColonEqExpr)* (comma)?
setOrTableConstr = '{' ((exprColonEqExpr comma)* | ':' ) '}'
castExpr = 'cast' '[' optInd typeDesc optPar ']' '(' optInd expr optPar ')'
parKeyw = 'discard' | 'include' | 'if' | 'while' | 'case' | 'try'
        | 'finally' | 'except' | 'for' | 'block' | 'const' | 'let'
        | 'when' | 'var' | 'mixin'
par = '(' optInd (&parKeyw complexOrSimpleStmt ^+ ';' 
                 | simpleExpr ('=' expr (';' complexOrSimpleStmt ^+ ';' )? )?
                            | (':' expr)? (',' (exprColonEqExpr comma?)*)?  )?
        optPar ')'
literal = | INT_LIT | INT8_LIT | INT16_LIT | INT32_LIT | INT64_LIT
          | UINT_LIT | UINT8_LIT | UINT16_LIT | UINT32_LIT | UINT64_LIT
          | FLOAT_LIT | FLOAT32_LIT | FLOAT64_LIT
          | STR_LIT | RSTR_LIT | TRIPLESTR_LIT
          | CHAR_LIT
          | NIL
generalizedLit = GENERALIZED_STR_LIT | GENERALIZED_TRIPLESTR_LIT
identOrLiteral = generalizedLit | symbol | literal
               | par | arrayConstr | setOrTableConstr
               | castExpr
tupleConstr = '(' optInd (exprColonEqExpr comma?)* optPar ')'
arrayConstr = '[' optInd (exprColonEqExpr comma?)* optPar ']'
primarySuffix = '(' (exprColonEqExpr comma?)* ')' doBlocks?
              | doBlocks
              | '.' optInd ('type' | 'addr' | symbol) generalizedLit?
              | '[' optInd indexExprList optPar ']'
              | '{' optInd indexExprList optPar '}'
              | &( '`'|IDENT|literal|'cast') expr # command syntax
condExpr = expr colcom expr optInd
        ('elif' expr colcom expr optInd)*
         'else' colcom expr
ifExpr = 'if' condExpr
whenExpr = 'when' condExpr
pragma = '{.' optInd (exprColonExpr comma?)* optPar ('.}' | '}')
identVis = symbol opr?  # postfix position
identWithPragma = identVis pragma?
declColonEquals = identWithPragma (comma identWithPragma)* comma?
                  (':' optInd typeDesc)? ('=' optInd expr)?
identColonEquals = ident (comma ident)* comma?
     (':' optInd typeDesc)? ('=' optInd expr)?)
inlTupleDecl = 'tuple'
    [' optInd  (identColonEquals (comma/semicolon)?)*  optPar ']'
extTupleDecl = 'tuple'
    COMMENT? (IND{>} identColonEquals (IND{=} identColonEquals)*)?
paramList = '(' declColonEquals ^* (comma/semicolon) ')'
paramListArrow = paramList? ('->' optInd typeDesc)?
paramListColon = paramList? (':' optInd typeDesc)?
doBlock = 'do' paramListArrow pragmas? colcom stmt
doBlocks = doBlock ^* IND{=}
procExpr = 'proc' paramListColon pragmas? ('=' COMMENT? stmt)?
distinct = 'distinct' optInd typeDesc
expr = (ifExpr
      | whenExpr
      | caseExpr
      | tryExpr)
      / simpleExpr
typeKeyw = 'var' | 'ref' | 'ptr' | 'shared' | 'type' | 'tuple'
         | 'proc' | 'iterator' | 'distinct' | 'object' | 'enum'
primary = typeKeyw typeDescK
        /  prefixOperator* identOrLiteral primarySuffix*
        / 'addr' primary
        / 'static' primary
        / 'bind' primary
typeDesc = simpleExpr
typeDefAux = simpleExpr
           | 'generic' typeClass
macroColon = ':' stmt? ( IND{=} 'of' exprList ':' stmt 
                       | IND{=} 'elif' expr ':' stmt
                       | IND{=} 'except' exprList ':' stmt
                       | IND{=} 'else' ':' stmt )*
exprStmt = simpleExpr
         (( '=' optInd expr )
         / ( expr ^+ comma
             doBlocks
              / macroColon
           ))?
importStmt = 'import' optInd expr
              ((comma expr)*
              / 'except' optInd (expr ^+ comma))
includeStmt = 'include' optInd expr ^+ comma
fromStmt = 'from' moduleName 'import' optInd expr (comma expr)*
returnStmt = 'return' optInd expr?
raiseStmt = 'raise' optInd expr?
yieldStmt = 'yield' optInd expr?
discardStmt = 'discard' optInd expr?
breakStmt = 'break' optInd expr?
continueStmt = 'break' optInd expr?
condStmt = expr colcom stmt COMMENT?
           (IND{=} 'elif' expr colcom stmt)*
           (IND{=} 'else' colcom stmt)?
ifStmt = 'if' condStmt
whenStmt = 'when' condStmt
whileStmt = 'while' expr colcom stmt
ofBranch = 'of' exprList colcom stmt
ofBranches = ofBranch (IND{=} ofBranch)*
                      (IND{=} 'elif' expr colcom stmt)*
                      (IND{=} 'else' colcom stmt)?
caseStmt = 'case' expr ':'? COMMENT?
            (IND{>} ofBranches DED
            | IND{=} ofBranches)
tryStmt = 'try' colcom stmt &(IND{=}? 'except'|'finally')
           (IND{=}? 'except' exprList colcom stmt)*
           (IND{=}? 'finally' colcom stmt)?
tryExpr = 'try' colcom stmt &(optInd 'except'|'finally')
           (optInd 'except' exprList colcom stmt)*
           (optInd 'finally' colcom stmt)?
exceptBlock = 'except' colcom stmt
forStmt = 'for' (identWithPragma ^+ comma) 'in' expr colcom stmt
blockStmt = 'block' symbol? colcom stmt
staticStmt = 'static' colcom stmt
asmStmt = 'asm' pragma? (STR_LIT | RSTR_LIT | TRIPLE_STR_LIT)
genericParam = symbol (comma symbol)* (colon expr)? ('=' optInd expr)?
genericParamList = '[' optInd
  genericParam ^* (comma/semicolon) optPar ']'
pattern = '{' stmt '}'
indAndComment = (IND{>} COMMENT)? | COMMENT?
routine = optInd identVis pattern? genericParamList?
  paramListColon pragma? ('=' COMMENT? stmt)? indAndComment
commentStmt = COMMENT
section(p) = COMMENT? p / (IND{>} (p / COMMENT)^+IND{=} DED)
constant = identWithPragma (colon typedesc)? '=' optInd expr indAndComment
enum = 'enum' optInd (symbol optInd ('=' optInd expr COMMENT?)? comma?)+
objectWhen = 'when' expr colcom objectPart COMMENT?
            ('elif' expr colcom objectPart COMMENT?)*
            ('else' colcom objectPart COMMENT?)?
objectBranch = 'of' exprList colcom objectPart
objectBranches = objectBranch (IND{=} objectBranch)*
                      (IND{=} 'elif' expr colcom objectPart)*
                      (IND{=} 'else' colcom objectPart)?
objectCase = 'case' identWithPragma ':' typeDesc ':'? COMMENT?
            (IND{>} objectBranches DED
            | IND{=} objectBranches)
objectPart = IND{>} objectPart^+IND{=} DED
           / objectWhen / objectCase / 'nil' / declColonEquals
object = 'object' pragma? ('of' typeDesc)? COMMENT? objectPart
typeClassParam = ('var')? symbol
typeClass = typeClassParam ^* ',' (pragma)? ('of' typeDesc ^* ',')?
              &IND{>} stmt
typeDef = identWithPragma genericParamList? '=' optInd typeDefAux
            indAndComment?
varTuple = '(' optInd identWithPragma ^+ comma optPar ')' '=' optInd expr
variable = (varTuple / identColonEquals) indAndComment
bindStmt = 'bind' optInd qualifiedIdent ^+ comma
mixinStmt = 'mixin' optInd qualifiedIdent ^+ comma
pragmaStmt = pragma (':' COMMENT? stmt)?
simpleStmt = ((returnStmt | raiseStmt | yieldStmt | discardStmt | breakStmt
           | continueStmt | pragmaStmt | importStmt | exportStmt | fromStmt
           | includeStmt | commentStmt) / exprStmt) COMMENT?
complexOrSimpleStmt = (ifStmt | whenStmt | whileStmt
                    | tryStmt | finallyStmt | exceptStmt | forStmt
                    | blockStmt | staticStmt | asmStmt
                    | 'proc' routine
                    | 'method' routine
                    | 'iterator' routine
                    | 'macro' routine
                    | 'template' routine
                    | 'converter' routine
                    | 'type' section(typeDef)
                    | 'const' section(constant)
                    | ('let' | 'var') section(variable)
                    | bindStmt | mixinStmt)
                    / simpleStmt
stmt = (IND{>} complexOrSimpleStmt^+(IND{=} / ';') DED)
     / simpleStmt ^+ ';'

Types

All expressions have a type which is known at compile time. Nimrod is statically typed. One can declare new types, which is in essence defining an identifier that can be used to denote this custom type.

These are the major type classes:

Ordinal types

Ordinal types have the following characteristics:

Integers, bool, characters and enumeration types (and subranges of these types) belong to ordinal types. For reasons of simplicity of implementation the types uint and uint64 are not ordinal types.

Pre-defined integer types

These integer types are pre-defined:

int
the generic signed integer type; its size is platform dependent and has the same size as a pointer. This type should be used in general. An integer literal that has no type suffix is of this type.
intXX
additional signed integer types of XX bits use this naming scheme (example: int16 is a 16 bit wide integer). The current implementation supports int8, int16, int32, int64. Literals of these types have the suffix 'iXX.
uint
the generic unsigned integer type; its size is platform dependent and has the same size as a pointer. An integer literal with the type suffix 'u is of this type.
uintXX
additional signed integer types of XX bits use this naming scheme (example: uint16 is a 16 bit wide unsigned integer). The current implementation supports uint8, uint16, uint32, uint64. Literals of these types have the suffix 'uXX. Unsigned operations all wrap around; they cannot lead to over- or underflow errors.

In addition to the usual arithmetic operators for signed and unsigned integers (+ - * etc.) there are also operators that formally work on signed integers but treat their arguments as unsigned: They are mostly provided for backwards compatibility with older versions of the language that lacked unsigned integer types. These unsigned operations for signed integers use the % suffix as convention:

operationmeaning
a +% bunsigned integer addition
a -% bunsigned integer subtraction
a *% bunsigned integer multiplication
a /% bunsigned integer division
a %% bunsigned integer modulo operation
a <% btreat a and b as unsigned and compare
a <=% btreat a and b as unsigned and compare
ze(a)extends the bits of a with zeros until it has the width of the int type
toU8(a)treats a as unsigned and converts it to an unsigned integer of 8 bits (but still the int8 type)
toU16(a)treats a as unsigned and converts it to an unsigned integer of 16 bits (but still the int16 type)
toU32(a)treats a as unsigned and converts it to an unsigned integer of 32 bits (but still the int32 type)

Automatic type conversion is performed in expressions where different kinds of integer types are used: the smaller type is converted to the larger.

A narrowing type conversion converts a larger to a smaller type (for example int32 -> int16. A widening type conversion converts a smaller type to a larger type (for example int16 -> int32). In Nimrod only widening type conversions are implicit:

var myInt16 = 5i16
var myInt: int
myInt16 + 34     # of type ``int16``
myInt16 + myInt  # of type ``int``
myInt16 + 2i32   # of type ``int32``

However, int literals are implicitly convertible to a smaller integer type if the literal's value fits this smaller type and such a conversion is less expensive than other implicit conversions, so myInt16 + 34 produces an int16 result.

For further details, see Convertible relation.

Subrange types

A subrange type is a range of values from an ordinal type (the base type). To define a subrange type, one must specify it's limiting values: the lowest and highest value of the type:

type
  TSubrange = range[0..5]

TSubrange is a subrange of an integer which can only hold the values 0 to 5. Assigning any other value to a variable of type TSubrange is a checked runtime error (or static error if it can be statically determined). Assignments from the base type to one of its subrange types (and vice versa) are allowed.

A subrange type has the same size as its base type (int in the example).

Nimrod requires interval arithmetic for subrange types over a set of built-in operators that involve constants: x %% 3 is of type range[0..2]. The following built-in operators for integers are affected by this rule: -, +, *, min, max, succ, pred, mod, div, %%, and (bitwise and).

Bitwise and only produces a range if one of its operands is a constant x so that (x+1) is a number of two. (Bitwise and is then a %% operation.)

This means that the following code is accepted:

case (x and 3) + 7
of 7: echo "A"
of 8: echo "B"
of 9: echo "C"
of 10: echo "D"
# note: no ``else`` required as (x and 3) + 7 has the type: range[7..10]

Pre-defined floating point types

The following floating point types are pre-defined:

float
the generic floating point type; its size is platform dependent (the compiler chooses the processor's fastest floating point type). This type should be used in general.
floatXX
an implementation may define additional floating point types of XX bits using this naming scheme (example: float64 is a 64 bit wide float). The current implementation supports float32 and float64. Literals of these types have the suffix 'fXX.

Automatic type conversion in expressions with different kinds of floating point types is performed: See Convertible relation for further details. Arithmetic performed on floating point types follows the IEEE standard. Integer types are not converted to floating point types automatically and vice versa.

The IEEE standard defines five types of floating-point exceptions:

The IEEE exceptions are either ignored at runtime or mapped to the Nimrod exceptions: EFloatInvalidOp, EFloatDivByZero, EFloatOverflow, EFloatUnderflow, and EFloatInexact. These exceptions inherit from the EFloatingPoint base class.

Nimrod provides the pragmas NaNChecks and InfChecks to control whether the IEEE exceptions are ignored or trap a Nimrod exception:

{.NanChecks: on, InfChecks: on.}
var a = 1.0
var b = 0.0
echo b / b # raises EFloatInvalidOp
echo a / b # raises EFloatOverflow

In the current implementation EFloatDivByZero and EFloatInexact are never raised. EFloatOverflow is raised instead of EFloatDivByZero. There is also a floatChecks pragma that is a short-cut for the combination of NaNChecks and InfChecks pragmas. floatChecks are turned off as default.

The only operations that are affected by the floatChecks pragma are the +, -, *, / operators for floating point types.

Boolean type

The boolean type is named bool in Nimrod and can be one of the two pre-defined values true and false. Conditions in while, if, elif, when statements need to be of type bool.

This condition holds:

ord(false) == 0 and ord(true) == 1

The operators not, and, or, xor, <, <=, >, >=, !=, == are defined for the bool type. The and and or operators perform short-cut evaluation. Example:

while p != nil and p.name != "xyz":
  # p.name is not evaluated if p == nil
  p = p.next

The size of the bool type is one byte.

Character type

The character type is named char in Nimrod. Its size is one byte. Thus it cannot represent an UTF-8 character, but a part of it. The reason for this is efficiency: for the overwhelming majority of use-cases, the resulting programs will still handle UTF-8 properly as UTF-8 was specially designed for this. Another reason is that Nimrod can support array[char, int] or set[char] efficiently as many algorithms rely on this feature. The TRune type is used for Unicode characters, it can represent any Unicode character. TRune is declared in the unicode module.

Enumeration types

Enumeration types define a new type whose values consist of the ones specified. The values are ordered. Example:

type
  TDirection = enum
    north, east, south, west

Now the following holds:

ord(north) == 0
ord(east) == 1
ord(south) == 2
ord(west) == 3

Thus, north < east < south < west. The comparison operators can be used with enumeration types.

For better interfacing to other programming languages, the fields of enum types can be assigned an explicit ordinal value. However, the ordinal values have to be in ascending order. A field whose ordinal value is not explicitly given is assigned the value of the previous field + 1.

An explicit ordered enum can have holes:

type
  TTokenType = enum
    a = 2, b = 4, c = 89 # holes are valid

However, it is then not an ordinal anymore, so it is not possible to use these enums as an index type for arrays. The procedures inc, dec, succ and pred are not available for them either.

The compiler supports the built-in stringify operator $ for enumerations. The stringify's result can be controlled by explicitly giving the string values to use:

type
  TMyEnum = enum
    valueA = (0, "my value A"),
    valueB = "value B",
    valueC = 2,
    valueD = (3, "abc")

As can be seen from the example, it is possible to both specify a field's ordinal value and its string value by using a tuple. It is also possible to only specify one of them.

An enum can be marked with the pure pragma so that it's fields are not added to the current scope, so they always need to be accessed via TMyEnum.value:

type
  TMyEnum {.pure.} = enum
    valueA, valueB, valueC, valueD

echo valueA # error: Unknown identifier
echo TMyEnum.valueA # works

String type

All string literals are of the type string. A string in Nimrod is very similar to a sequence of characters. However, strings in Nimrod are both zero-terminated and have a length field. One can retrieve the length with the builtin len procedure; the length never counts the terminating zero. The assignment operator for strings always copies the string. The & operator concatenates strings.

Strings are compared by their lexicographical order. All comparison operators are available. Strings can be indexed like arrays (lower bound is 0). Unlike arrays, they can be used in case statements:

case paramStr(i)
of "-v": incl(options, optVerbose)
of "-h", "-?": incl(options, optHelp)
else: write(stdout, "invalid command line option!\n")

Per convention, all strings are UTF-8 strings, but this is not enforced. For example, when reading strings from binary files, they are merely a sequence of bytes. The index operation s[i] means the i-th char of s, not the i-th unichar. The iterator runes from the unicode module can be used for iteration over all Unicode characters.

CString type

The cstring type represents a pointer to a zero-terminated char array compatible to the type char* in Ansi C. Its primary purpose lies in easy interfacing with C. The index operation s[i] means the i-th char of s; however no bounds checking for cstring is performed making the index operation unsafe.

A Nimrod string is implicitly convertible to cstring for convenience. If a Nimrod string is passed to a C-style variadic proc, it is implicitly converted to cstring too:

proc printf(formatstr: cstring) {.importc: "printf", varargs,
                                  header: "<stdio.h>".}

printf("This works %s", "as expected")

Even though the conversion is implicit, it is not safe: The garbage collector does not consider a cstring to be a root and may collect the underlying memory. However in practice this almost never happens as the GC considers stack roots conservatively. One can use the builtin procs GC_ref and GC_unref to keep the string data alive for the rare cases where it does not work.

A $ proc is defined for cstrings that returns a string. Thus to get a nimrod string from a cstring:

var str: string = "Hello!"
var cstr: cstring = s
var newstr: string = $cstr

Structured types

A variable of a structured type can hold multiple values at the same time. Structured types can be nested to unlimited levels. Arrays, sequences, tuples, objects and sets belong to the structured types.

Array and sequence types

Arrays are a homogeneous type, meaning that each element in the array has the same type. Arrays always have a fixed length which is specified at compile time (except for open arrays). They can be indexed by any ordinal type. A parameter A may be an open array, in which case it is indexed by integers from 0 to len(A)-1. An array expression may be constructed by the array constructor [].

Sequences are similar to arrays but of dynamic length which may change during runtime (like strings). Sequences are implemented as growable arrays, allocating pieces of memory as items are added. A sequence S is always indexed by integers from 0 to len(S)-1 and its bounds are checked. Sequences can be constructed by the array constructor [] in conjunction with the array to sequence operator @. Another way to allocate space for a sequence is to call the built-in newSeq procedure.

A sequence may be passed to a parameter that is of type open array.

Example:

type
  TIntArray = array[0..5, int] # an array that is indexed with 0..5
  TIntSeq = seq[int] # a sequence of integers
var
  x: TIntArray
  y: TIntSeq
x = [1, 2, 3, 4, 5, 6]  # [] is the array constructor
y = @[1, 2, 3, 4, 5, 6] # the @ turns the array into a sequence

The lower bound of an array or sequence may be received by the built-in proc low(), the higher bound by high(). The length may be received by len(). low() for a sequence or an open array always returns 0, as this is the first valid index. One can append elements to a sequence with the add() proc or the & operator, and remove (and get) the last element of a sequence with the pop() proc.

The notation x[i] can be used to access the i-th element of x.

Arrays are always bounds checked (at compile-time or at runtime). These checks can be disabled via pragmas or invoking the compiler with the --boundChecks:off command line switch.

Open arrays

Often fixed size arrays turn out to be too inflexible; procedures should be able to deal with arrays of different sizes. The openarray type allows this; it can only be used for parameters. Openarrays are always indexed with an int starting at position 0. The len, low and high operations are available for open arrays too. Any array with a compatible base type can be passed to an openarray parameter, the index type does not matter. In addition to arrays sequences can also be passed to an open array parameter.

The openarray type cannot be nested: multidimensional openarrays are not supported because this is seldom needed and cannot be done efficiently.

Varargs

A varargs parameter is an openarray parameter that additionally allows to pass a variable number of arguments to a procedure. The compiler converts the list of arguments to an array implicitly:

proc myWriteln(f: TFile, a: varargs[string]) =
  for s in items(a):
    write(f, s)
  write(f, "\n")

myWriteln(stdout, "abc", "def", "xyz")
# is transformed to:
myWriteln(stdout, ["abc", "def", "xyz"])

This transformation is only done if the varargs parameter is the last parameter in the procedure header. It is also possible to perform type conversions in this context:

proc myWriteln(f: TFile, a: varargs[string, `$`]) =
  for s in items(a):
    write(f, s)
  write(f, "\n")

myWriteln(stdout, 123, "abc", 4.0)
# is transformed to:
myWriteln(stdout, [$123, $"def", $4.0])

In this example $ is applied to any argument that is passed to the parameter a. (Note that $ applied to strings is a nop.)

Tuples and object types

A variable of a tuple or object type is a heterogeneous storage container. A tuple or object defines various named fields of a type. A tuple also defines an order of the fields. Tuples are meant for heterogeneous storage types with no overhead and few abstraction possibilities. The constructor () can be used to construct tuples. The order of the fields in the constructor must match the order of the tuple's definition. Different tuple-types are equivalent if they specify the same fields of the same type in the same order. The names of the fields also have to be identical but this might change in a future version of the language.

The assignment operator for tuples copies each component. The default assignment operator for objects copies each component. Overloading of the assignment operator for objects is not possible, but this will change in future versions of the compiler.

type
  TPerson = tuple[name: string, age: int] # type representing a person:
                                          # a person consists of a name
                                          # and an age
var
  person: TPerson
person = (name: "Peter", age: 30)
# the same, but less readable:
person = ("Peter", 30)

The implementation aligns the fields for best access performance. The alignment is compatible with the way the C compiler does it.

For consistency with object declarations, tuples in a type section can also be defined with indentation instead of []:

type
  TPerson = tuple   # type representing a person
    name: string    # a person consists of a name
    age: natural    # and an age

Objects provide many features that tuples do not. Object provide inheritance and information hiding. Objects have access to their type at runtime, so that the of operator can be used to determine the object's type.

type
  TPerson {.inheritable.} = object
    name*: string   # the * means that `name` is accessible from other modules
    age: int        # no * means that the field is hidden
  
  TStudent = object of TPerson # a student is a person
    id: int                    # with an id field

var
  student: TStudent
  person: TPerson
assert(student of TStudent) # is true

Object fields that should be visible from outside the defining module, have to be marked by *. In contrast to tuples, different object types are never equivalent. Objects that have no ancestor are implicitly final and thus have no hidden type field. One can use the inheritable pragma to introduce new object roots apart from system.TObject.

Object construction

Objects can also be created with an object construction expression that has the syntax T(fieldA: valueA, fieldB: valueB, ...) where T is an object type or a ref object type:

var student = TStudent(name: "Anton", age: 5, id: 3)

For a ref object type system.new is invoked implicitly.

Object variants

Often an object hierarchy is overkill in certain situations where simple variant types are needed.

An example:

# This is an example how an abstract syntax tree could be modelled in Nimrod
type
  TNodeKind = enum  # the different node types
    nkInt,          # a leaf with an integer value
    nkFloat,        # a leaf with a float value
    nkString,       # a leaf with a string value
    nkAdd,          # an addition
    nkSub,          # a subtraction
    nkIf            # an if statement
  PNode = ref TNode
  TNode = object
    case kind: TNodeKind  # the ``kind`` field is the discriminator
    of nkInt: intVal: int
    of nkFloat: floatVal: float
    of nkString: strVal: string
    of nkAdd, nkSub:
      leftOp, rightOp: PNode
    of nkIf:
      condition, thenPart, elsePart: PNode

# create a new case object:
var n = PNode(kind: nkIf, condition: nil)
# accessing n.thenPart is valid because the ``nkIf`` branch is active:
n.thenPart = PNode(kind: nkFloat, floatVal: 2.0)

# the following statement raises an `EInvalidField` exception, because
# n.kind's value does not fit and the ``nkString`` branch is not active:
n.strVal = ""

# invalid: would change the active object branch:
n.kind = nkInt

var x = PNode(kind: nkAdd, leftOp: PNode(kind: nkInt, intVal: 4),
                           rightOp: PNode(kind: nkInt, intVal: 2))
# valid: does not change the active object branch:
x.kind = nkSub

As can been seen from the example, an advantage to an object hierarchy is that no casting between different object types is needed. Yet, access to invalid object fields raises an exception.

The syntax of case in an object declaration follows closely the syntax of the case statement: The branches in a case section may be indented too.

In the example the kind field is called the discriminator: For safety its address cannot be taken and assignments to it are restricted: The new value must not lead to a change of the active object branch. For an object branch switch system.reset has to be used.

Set type

The set type models the mathematical notion of a set. The set's basetype can only be an ordinal type. The reason is that sets are implemented as high performance bit vectors.

Sets can be constructed via the set constructor: {} is the empty set. The empty set is type compatible with any concrete set type. The constructor can also be used to include elements (and ranges of elements):

type
  TCharSet = set[char]
var
  x: TCharSet
x = {'a'..'z', '0'..'9'} # This constructs a set that contains the
                         # letters from 'a' to 'z' and the digits
                         # from '0' to '9'

These operations are supported by sets:

operationmeaning
A + Bunion of two sets
A * Bintersection of two sets
A - Bdifference of two sets (A without B's elements)
A == Bset equality
A <= Bsubset relation (A is subset of B or equal to B)
A < Bstrong subset relation (A is a real subset of B)
e in Aset membership (A contains element e)
e notin AA does not contain element e
contains(A, e)A contains element e
A -+- Bsymmetric set difference (= (A - B) + (B - A))
card(A)the cardinality of A (number of elements in A)
incl(A, elem)same as A = A + {elem}
excl(A, elem)same as A = A - {elem}

Sets are often used to define a type for the flags of a procedure. This is a much cleaner (and type safe) solution than just defining integer constants that should be or'ed together.

Reference and pointer types

References (similar to pointers in other programming languages) are a way to introduce many-to-one relationships. This means different references can point to and modify the same location in memory (also called aliasing).

Nimrod distinguishes between traced and untraced references. Untraced references are also called pointers. Traced references point to objects of a garbage collected heap, untraced references point to manually allocated objects or to objects somewhere else in memory. Thus untraced references are unsafe. However for certain low-level operations (accessing the hardware) untraced references are unavoidable.

Traced references are declared with the ref keyword, untraced references are declared with the ptr keyword.

An empty subscript [] notation can be used to derefer a reference, the addr procedure returns the address of an item. An address is always an untraced reference. Thus the usage of addr is an unsafe feature.

The . (access a tuple/object field operator) and [] (array/string/sequence index operator) operators perform implicit dereferencing operations for reference types:

type
  PNode = ref TNode
  TNode = object
    le, ri: PNode
    data: int

var
  n: PNode
new(n)
n.data = 9
# no need to write n[].data; in fact n[].data is highly discouraged!

As a syntactical extension object types can be anonymous if declared in a type section via the ref object or ptr object notations. This feature is useful if an object should only gain reference semantics:

type
  Node = ref object
    le, ri: Node
    data: int

To allocate a new traced object, the built-in procedure new has to be used. To deal with untraced memory, the procedures alloc, dealloc and realloc can be used. The documentation of the system module contains further information.

If a reference points to nothing, it has the value nil.

Special care has to be taken if an untraced object contains traced objects like traced references, strings or sequences: in order to free everything properly, the built-in procedure GCunref has to be called before freeing the untraced memory manually:

type
  TData = tuple[x, y: int, s: string]

# allocate memory for TData on the heap:
var d = cast[ptr TData](alloc0(sizeof(TData)))

# create a new string on the garbage collected heap:
d.s = "abc"

# tell the GC that the string is not needed anymore:
GCunref(d.s)

# free the memory:
dealloc(d)

Without the GCunref call the memory allocated for the d.s string would never be freed. The example also demonstrates two important features for low level programming: the sizeof proc returns the size of a type or value in bytes. The cast operator can circumvent the type system: the compiler is forced to treat the result of the alloc0 call (which returns an untyped pointer) as if it would have the type ptr TData. Casting should only be done if it is unavoidable: it breaks type safety and bugs can lead to mysterious crashes.

Note: The example only works because the memory is initialized to zero (alloc0 instead of alloc does this): d.s is thus initialized to nil which the string assignment can handle. One needs to know low level details like this when mixing garbage collected data with unmanaged memory.

Not nil annotation

All types for that nil is a valid value can be annotated to exclude nil as a valid value with the not nil annotation:

type
  PObject = ref TObj not nil
  TProc = (proc (x, y: int)) not nil

proc p(x: PObject) =
  echo "not nil"

# compiler catches this:
p(nil)

# and also this:
var x: PObject
p(x)

The compiler ensures that every code path initializes variables which contain not nilable pointers. The details of this analysis are still to be specified here.

Memory regions

The types ref and ptr can get an optional region annotation. A region has to be an object type.

Regions are very useful to separate user space and kernel memory in the development of OS kernels:

type
  Kernel = object
  Userspace = object

var a: Kernel ptr Stat
var b: Userspace ptr Stat

# the following does not compile as the pointer types are incompatible:
a = b

As the example shows ptr can also be used as a binary operator, region ptr T is a shortcut for ptr[region, T].

In order to make generic code easier to write ptr T is a subtype of ptr[R, T] for any R.

Furthermore the subtype relation of the region object types is lifted to the pointer types: If A <: B then ptr[A, T] <: ptr[B, T]. This can be used to model subregions of memory. As a special typing rule ptr[R, T] is not compatible to pointer to prevent the following from compiling:

# from system
proc dealloc(p: pointer)

# wrap some scripting language
type
  PythonsHeap = object
  PyObjectHeader = object
    rc: int
    typ: pointer
  PyObject = ptr[PythonsHeap, PyObjectHeader]

proc createPyObject(): PyObject {.importc: "...".}
proc destroyPyObject(x: PyObject) {.importc: "...".}

var foo = createPyObject()
# type error here, how convenient:
dealloc(foo)

Future directions:

Procedural type

A procedural type is internally a pointer to a procedure. nil is an allowed value for variables of a procedural type. Nimrod uses procedural types to achieve functional programming techniques.

Examples:

proc printItem(x: int) = ...

proc forEach(c: proc (x: int) {.cdecl.}) =
  ...

forEach(printItem)  # this will NOT work because calling conventions differ
type
  TOnMouseMove = proc (x, y: int) {.closure.}

proc onMouseMove(mouseX, mouseY: int) =
  # has default calling convention
  echo "x: ", mouseX, " y: ", mouseY

proc setOnMouseMove(mouseMoveEvent: TOnMouseMove) = discard

# ok, 'onMouseMove' has the default calling convention, which is compatible
# to 'closure':
setOnMouseMove(onMouseMove)

A subtle issue with procedural types is that the calling convention of the procedure influences the type compatibility: procedural types are only compatible if they have the same calling convention. As a special extension, a procedure of the calling convention nimcall can be passed to a parameter that expects a proc of the calling convention closure.

Nimrod supports these calling conventions:

nimcall
is the default convention used for a Nimrod proc. It is the same as fastcall, but only for C compilers that support fastcall.
closure
is the default calling convention for a procedural type that lacks any pragma annotations. It indicates that the procedure has a hidden implicit parameter (an environment). Proc vars that have the calling convention closure take up two machine words: One for the proc pointer and another one for the pointer to implicitly passed environment.
stdcall
This the stdcall convention as specified by Microsoft. The generated C procedure is declared with the __stdcall keyword.
cdecl
The cdecl convention means that a procedure shall use the same convention as the C compiler. Under windows the generated C procedure is declared with the __cdecl keyword.
safecall
This is the safecall convention as specified by Microsoft. The generated C procedure is declared with the __safecall keyword. The word safe refers to the fact that all hardware registers shall be pushed to the hardware stack.
inline
The inline convention means the the caller should not call the procedure, but inline its code directly. Note that Nimrod does not inline, but leaves this to the C compiler; it generates __inline procedures. This is only a hint for the compiler: it may completely ignore it and it may inline procedures that are not marked as inline.
fastcall
Fastcall means different things to different C compilers. One gets whatever the C __fastcall means.
syscall
The syscall convention is the same as __syscall in C. It is used for interrupts.
noconv
The generated C code will not have any explicit calling convention and thus use the C compiler's default calling convention. This is needed because Nimrod's default calling convention for procedures is fastcall to improve speed.

Most calling conventions exist only for the Windows 32-bit platform.

Assigning/passing a procedure to a procedural variable is only allowed if one of the following conditions hold:

  1. The procedure that is accessed resides in the current module.
  2. The procedure is marked with the procvar pragma (see procvar pragma).
  3. The procedure has a calling convention that differs from nimcall.
  4. The procedure is anonymous.

The rules' purpose is to prevent the case that extending a non-procvar procedure with default parameters breaks client code.

The default calling convention is nimcall, unless it is an inner proc (a proc inside of a proc). For an inner proc an analysis is performed whether it accesses its environment. If it does so, it has the calling convention closure, otherwise it has the calling convention nimcall.

Distinct type

A distinct type is new type derived from a base type that is incompatible with its base type. In particular, it is an essential property of a distinct type that it does not imply a subtype relation between it and its base type. Explicit type conversions from a distinct type to its base type and vice versa are allowed.

Modelling currencies

A distinct type can be used to model different physical units with a numerical base type, for example. The following example models currencies.

Different currencies should not be mixed in monetary calculations. Distinct types are a perfect tool to model different currencies:

type
  TDollar = distinct int
  TEuro = distinct int

var
  d: TDollar
  e: TEuro

echo d + 12
# Error: cannot add a number with no unit and a ``TDollar``

Unfortunately, d + 12.TDollar is not allowed either, because + is defined for int (among others), not for TDollar. So a + for dollars needs to be defined:

proc `+` (x, y: TDollar): TDollar =
  result = TDollar(int(x) + int(y))

It does not make sense to multiply a dollar with a dollar, but with a number without unit; and the same holds for division:

proc `*` (x: TDollar, y: int): TDollar =
  result = TDollar(int(x) * y)

proc `*` (x: int, y: TDollar): TDollar =
  result = TDollar(x * int(y))

proc `div` ...

This quickly gets tedious. The implementations are trivial and the compiler should not generate all this code only to optimize it away later - after all + for dollars should produce the same binary code as + for ints. The pragma borrow has been designed to solve this problem; in principle it generates the above trivial implementations:

proc `*` (x: TDollar, y: int): TDollar {.borrow.}
proc `*` (x: int, y: TDollar): TDollar {.borrow.}
proc `div` (x: TDollar, y: int): TDollar {.borrow.}

The borrow pragma makes the compiler use the same implementation as the proc that deals with the distinct type's base type, so no code is generated.

But it seems all this boilerplate code needs to be repeated for the TEuro currency. This can be solved with templates.

template additive(typ: typedesc): stmt =
  proc `+` *(x, y: typ): typ {.borrow.}
  proc `-` *(x, y: typ): typ {.borrow.}
  
  # unary operators:
  proc `+` *(x: typ): typ {.borrow.}
  proc `-` *(x: typ): typ {.borrow.}

template multiplicative(typ, base: typedesc): stmt =
  proc `*` *(x: typ, y: base): typ {.borrow.}
  proc `*` *(x: base, y: typ): typ {.borrow.}
  proc `div` *(x: typ, y: base): typ {.borrow.}
  proc `mod` *(x: typ, y: base): typ {.borrow.}

template comparable(typ: typedesc): stmt =
  proc `<` * (x, y: typ): bool {.borrow.}
  proc `<=` * (x, y: typ): bool {.borrow.}
  proc `==` * (x, y: typ): bool {.borrow.}

template defineCurrency(typ, base: expr): stmt =
  type
    typ* = distinct base
  additive(typ)
  multiplicative(typ, base)
  comparable(typ)

defineCurrency(TDollar, int)
defineCurrency(TEuro, int)

The borrow pragma can also be used to annotate the distinct type to allow certain builtin operations to be lifted:

type
  Foo = object
    a, b: int
    s: string
  
  Bar {.borrow: `.`.} = distinct Foo

var bb: ref Bar
new bb
# field access now valid
bb.a = 90
bb.s = "abc"

Currently only the dot accessor can be borrowed in this way.

Avoiding SQL injection attacks

An SQL statement that is passed from Nimrod to an SQL database might be modelled as a string. However, using string templates and filling in the values is vulnerable to the famous SQL injection attack:

import strutils

proc query(db: TDbHandle, statement: string) = ...

var
  username: string

db.query("SELECT FROM users WHERE name = '$1'" % username)
# Horrible security hole, but the compiler does not mind!

This can be avoided by distinguishing strings that contain SQL from strings that don't. Distinct types provide a means to introduce a new string type TSQL that is incompatible with string:

type
  TSQL = distinct string

proc query(db: TDbHandle, statement: TSQL) = ...

var
  username: string

db.query("SELECT FROM users WHERE name = '$1'" % username)
# Error at compile time: `query` expects an SQL string!

It is an essential property of abstract types that they do not imply a subtype relation between the abtract type and its base type. Explict type conversions from string to TSQL are allowed:

import strutils, sequtils

proc properQuote(s: string): TSQL =
  # quotes a string properly for an SQL statement
  return TSQL(s)

proc `%` (frmt: TSQL, values: openarray[string]): TSQL =
  # quote each argument:
  let v = values.mapIt(TSQL, properQuote(it))
  # we need a temporary type for the type conversion :-(
  type TStrSeq = seq[string]
  # call strutils.`%`:
  result = TSQL(string(frmt) % TStrSeq(v))

db.query("SELECT FROM users WHERE name = '$1'".TSQL % [username])

Now we have compile-time checking against SQL injection attacks. Since "".TSQL is transformed to TSQL("") no new syntax is needed for nice looking TSQL string literals. The hypothetical TSQL type actually exists in the library as the TSqlQuery type of modules like db_sqlite.

Void type

The void type denotes the absense of any type. Parameters of type void are treated as non-existent, void as a return type means that the procedure does not return a value:

proc nothing(x, y: void): void =
  echo "ha"

nothing() # writes "ha" to stdout

The void type is particularly useful for generic code:

proc callProc[T](p: proc (x: T), x: T) =
  when T is void:
    p()
  else:
    p(x)

proc intProc(x: int) = discard
proc emptyProc() = discard

callProc[int](intProc, 12)
callProc[void](emptyProc)

However, a void type cannot be inferred in generic code:

callProc(emptyProc)
# Error: type mismatch: got (proc ())
# but expected one of:
# callProc(p: proc (T), x: T)

The void type is only valid for parameters and return types; other symbols cannot have the type void.

Type relations

The following section defines several relations on types that are needed to describe the type checking done by the compiler.

Type equality

Nimrod uses structural type equivalence for most types. Only for objects, enumerations and distinct types name equivalence is used. The following algorithm (in pseudo-code) determines type equality:

proc typeEqualsAux(a, b: PType,
                   s: var set[PType * PType]): bool =
  if (a,b) in s: return true
  incl(s, (a,b))
  if a.kind == b.kind:
    case a.kind
    of int, intXX, float, floatXX, char, string, cstring, pointer,
        bool, nil, void:
      # leaf type: kinds identical; nothing more to check
      result = true
    of ref, ptr, var, set, seq, openarray:
      result = typeEqualsAux(a.baseType, b.baseType, s)
    of range:
      result = typeEqualsAux(a.baseType, b.baseType, s) and
        (a.rangeA == b.rangeA) and (a.rangeB == b.rangeB)
    of array:
      result = typeEqualsAux(a.baseType, b.baseType, s) and
               typeEqualsAux(a.indexType, b.indexType, s)
    of tuple:
      if a.tupleLen == b.tupleLen:
        for i in 0..a.tupleLen-1:
          if not typeEqualsAux(a[i], b[i], s): return false
        result = true
    of object, enum, distinct:
      result = a == b
    of proc:
      result = typeEqualsAux(a.parameterTuple, b.parameterTuple, s) and
               typeEqualsAux(a.resultType, b.resultType, s) and
               a.callingConvention == b.callingConvention

proc typeEquals(a, b: PType): bool =
  var s: set[PType * PType] = {}
  result = typeEqualsAux(a, b, s)

Since types are graphs which can have cycles, the above algorithm needs an auxiliary set s to detect this case.

Type equality modulo type distinction

The following algorithm (in pseudo-code) determines whether two types are equal with no respect to distinct types. For brevity the cycle check with an auxiliary set s is omitted:

proc typeEqualsOrDistinct(a, b: PType): bool =
  if a.kind == b.kind:
    case a.kind
    of int, intXX, float, floatXX, char, string, cstring, pointer,
        bool, nil, void:
      # leaf type: kinds identical; nothing more to check
      result = true
    of ref, ptr, var, set, seq, openarray:
      result = typeEqualsOrDistinct(a.baseType, b.baseType)
    of range:
      result = typeEqualsOrDistinct(a.baseType, b.baseType) and
        (a.rangeA == b.rangeA) and (a.rangeB == b.rangeB)
    of array:
      result = typeEqualsOrDistinct(a.baseType, b.baseType) and
               typeEqualsOrDistinct(a.indexType, b.indexType)
    of tuple:
      if a.tupleLen == b.tupleLen:
        for i in 0..a.tupleLen-1:
          if not typeEqualsOrDistinct(a[i], b[i]): return false
        result = true
    of distinct:
      result = typeEqualsOrDistinct(a.baseType, b.baseType)
    of object, enum:
      result = a == b
    of proc:
      result = typeEqualsOrDistinct(a.parameterTuple, b.parameterTuple) and
               typeEqualsOrDistinct(a.resultType, b.resultType) and
               a.callingConvention == b.callingConvention
  elif a.kind == distinct:
    result = typeEqualsOrDistinct(a.baseType, b)
  elif b.kind == distinct:
    result = typeEqualsOrDistinct(a, b.baseType)

Subtype relation

If object a inherits from b, a is a subtype of b. This subtype relation is extended to the types var, ref, ptr:

proc isSubtype(a, b: PType): bool =
  if a.kind == b.kind:
    case a.kind
    of object:
      var aa = a.baseType
      while aa != nil and aa != b: aa = aa.baseType
      result = aa == b
    of var, ref, ptr:
      result = isSubtype(a.baseType, b.baseType)

Convertible relation

A type a is implicitly convertible to type b iff the following algorithm returns true:

# XXX range types?
proc isImplicitlyConvertible(a, b: PType): bool =
  case a.kind
  of int:     result = b in {int8, int16, int32, int64, uint, uint8, uint16,
                             uint32, uint64, float, float32, float64}
  of int8:    result = b in {int16, int32, int64, int}
  of int16:   result = b in {int32, int64, int}
  of int32:   result = b in {int64, int}
  of uint:    result = b in {uint32, uint64}
  of uint8:   result = b in {uint16, uint32, uint64}
  of uint16:  result = b in {uint32, uint64}
  of uint32:  result = b in {uint64}
  of float:   result = b in {float32, float64}
  of float32: result = b in {float64, float}
  of float64: result = b in {float32, float}
  of seq:
    result = b == openArray and typeEquals(a.baseType, b.baseType)
  of array:
    result = b == openArray and typeEquals(a.baseType, b.baseType)
    if a.baseType == char and a.indexType.rangeA == 0:
      result = b = cstring
  of cstring, ptr:
    result = b == pointer
  of string:
    result = b == cstring

A type a is explicitly convertible to type b iff the following algorithm returns true:

proc isIntegralType(t: PType): bool =
  result = isOrdinal(t) or t.kind in {float, float32, float64}

proc isExplicitlyConvertible(a, b: PType): bool =
  result = false
  if isImplicitlyConvertible(a, b): return true
  if typeEqualsOrDistinct(a, b): return true
  if isIntegralType(a) and isIntegralType(b): return true
  if isSubtype(a, b) or isSubtype(b, a): return true

The convertible relation can be relaxed by a user-defined type converter.

converter toInt(x: char): int = result = ord(x)

var
  x: int
  chr: char = 'a'

# implicit conversion magic happens here
x = chr
echo x # => 97
# you can use the explicit form too
x = chr.toInt
echo x # => 97

The type conversion T(a) is an L-value if a is an L-value and typeEqualsOrDistinct(T, type(a)) holds.

Assignment compatibility

An expression b can be assigned to an expression a iff a is an l-value and isImplicitlyConvertible(b.typ, a.typ) holds.

Overloading resolution

To be written.

Statements and expressions

Nimrod uses the common statement/expression paradigm: Statements do not produce a value in contrast to expressions. However, some expressions are statements.

Statements are separated into simple statements and complex statements. Simple statements are statements that cannot contain other statements like assignments, calls or the return statement; complex statements can contain other statements. To avoid the dangling else problem, complex statements always have to be intended. The details can be found in the grammar.

Statement list expression

Statements can also occur in an expression context that looks like (stmt1; stmt2; ...; ex). This is called an statement list expression or (;). The type of (stmt1; stmt2; ...; ex) is the type of ex. All the other statements must be of type void. (One can use discard to produce a void type.) (;) does not introduce a new scope.

Discard statement

Example:

proc p(x, y: int): int =
  result = x + y

discard p(3, 4) # discard the return value of `p`

The discard statement evaluates its expression for side-effects and throws the expression's resulting value away.

Ignoring the return value of a procedure without using a discard statement is a static error.

The return value can be ignored implicitly if the called proc/iterator has been declared with the discardable pragma:

proc p(x, y: int): int {.discardable.} =
  result = x + y

p(3, 4) # now valid

An empty discard statement is often used as a null statement:

proc classify(s: string) =
  case s[0]
  of SymChars, '_': echo "an identifier"
  of '0'..'9': echo "a number"
  else: discard

Var statement

Var statements declare new local and global variables and initialize them. A comma separated list of variables can be used to specify variables of the same type:

var
  a: int = 0
  x, y, z: int

If an initializer is given the type can be omitted: the variable is then of the same type as the initializing expression. Variables are always initialized with a default value if there is no initializing expression. The default value depends on the type and is always a zero in binary.

Typedefault value
any integer type0
any float0.0
char'\0'
boolfalse
ref or pointer typenil
procedural typenil
sequencenil (not @[])
stringnil (not "")
tuple[x: A, y: B, ...](default(A), default(B), ...) (analogous for objects)
array[0..., T][default(T), ...]
range[T]default(T); this may be out of the valid range
T = enumcast[T](0); this may be an invalid value

The implicit initialization can be avoided for optimization reasons with the noinit pragma:

var
  a {.noInit.}: array [0..1023, char]

If a proc is annotated with the noinit pragma this refers to its implicit result variable:

proc returnUndefinedValue: int {.noinit.} = discard

The implicit initialization can be also prevented by the requiresInit type pragma. The compiler requires an explicit initialization then. However it does a control flow analysis to prove the variable has been initialized and does not rely on syntactic properties:

type
  TMyObject = object {.requiresInit.}

proc p() =
  # the following is valid:
  var x: TMyObject
  if someCondition():
    x = a()
  else:
    x = a()
  use x

let statement

A let statement declares new local and global single assignment variables and binds a value to them. The syntax is the of the var statement, except that the keyword var is replaced by the keyword let. Let variables are not l-values and can thus not be passed to var parameters nor can their address be taken. They cannot be assigned new values.

For let variables the same pragmas are available as for ordinary variables.

Const section

Constants are symbols which are bound to a value. The constant's value cannot change. The compiler must be able to evaluate the expression in a constant declaration at compile time.

Nimrod contains a sophisticated compile-time evaluator, so procedures which have no side-effect can be used in constant expressions too:

import strutils
const
  constEval = contains("abc", 'b') # computed at compile time!

The rules for compile-time computability are:

  1. Literals are compile-time computable.
  2. Type conversions are compile-time computable.
  3. Procedure calls of the form p(X) are compile-time computable if p is a proc without side-effects (see the noSideEffect pragma for details) and if X is a (possibly empty) list of compile-time computable arguments.

Constants cannot be of type ptr, ref, var or object, nor can they contain such a type.

Static statement/expression

A static statement/expression can be used to enforce compile time evaluation explicitly. Enforced compile time evaluation can even evaluate code that has side effects:

static:
  echo "echo at compile time"

It's a static error if the compiler cannot perform the evaluation at compile time.

The current implementation poses some restrictions for compile time evaluation: Code which contains cast or makes use of the foreign function interface cannot be evaluated at compile time. Later versions of Nimrod will support the FFI at compile time.

If statement

Example:

var name = readLine(stdin)

if name == "Andreas":
  echo("What a nice name!")
elif name == "":
  echo("Don't you have a name?")
else:
  echo("Boring name...")

The if statement is a simple way to make a branch in the control flow: The expression after the keyword if is evaluated, if it is true the corresponding statements after the : are executed. Otherwise the expression after the elif is evaluated (if there is an elif branch), if it is true the corresponding statements after the : are executed. This goes on until the last elif. If all conditions fail, the else part is executed. If there is no else part, execution continues with the statement after the if statement.

The scoping for an if statement is slightly subtle to support an important use case. A new scope starts for the if/elif condition and ends after the corresponding then block:

if {| (let m = input =~ re"(\w+)=\w+"; m.isMatch):
  echo "key ", m[0], " value ", m[1]  |}
elif {| (let m = input =~ re""; m.isMatch):
  echo "new m in this scope" |}
else:
  # 'm' not declared here

In the example the scopes have been enclosed in {| |}.

Case statement

Example:

case readline(stdin)
of "delete-everything", "restart-computer":
  echo("permission denied")
of "go-for-a-walk":     echo("please yourself")
else:                   echo("unknown command")

# indentation of the branches is also allowed; and so is an optional colon
# after the selecting expression:
case readline(stdin):
  of "delete-everything", "restart-computer":
    echo("permission denied")
  of "go-for-a-walk":     echo("please yourself")
  else:                   echo("unknown command")

The case statement is similar to the if statement, but it represents a multi-branch selection. The expression after the keyword case is evaluated and if its value is in a slicelist the corresponding statements (after the of keyword) are executed. If the value is not in any given slicelist the else part is executed. If there is no else part and not all possible values that expr can hold occur in a slicelist, a static error occurs. This holds only for expressions of ordinal types. "All possible values" of expr are determined by expr's type.

If the expression is not of an ordinal type, and no else part is given, control passes after the case statement.

To suppress the static error in the ordinal case an else part with an empty discard statement can be used.

As a special semantic extension, an expression in an of branch of a case statement may evaluate to a set or array constructor; the set or array is then expanded into a list of its elements:

const
  SymChars: set[char] = {'a'..'z', 'A'..'Z', '\x80'..'\xFF'}

proc classify(s: string) =
  case s[0]
  of SymChars, '_': echo "an identifier"
  of '0'..'9': echo "a number"
  else: echo "other"

# is equivalent to:
proc classify(s: string) =
  case s[0]
  of 'a'..'z', 'A'..'Z', '\x80'..'\xFF', '_': echo "an identifier"
  of '0'..'9': echo "a number"
  else: echo "other"

When statement

Example:

when sizeof(int) == 2:
  echo("running on a 16 bit system!")
elif sizeof(int) == 4:
  echo("running on a 32 bit system!")
elif sizeof(int) == 8:
  echo("running on a 64 bit system!")
else:
  echo("cannot happen!")

The when statement is almost identical to the if statement with some exceptions:

The when statement enables conditional compilation techniques. As a special syntactic extension, the when construct is also available within object definitions.

Return statement

Example:

return 40+2

The return statement ends the execution of the current procedure. It is only allowed in procedures. If there is an expr, this is syntactic sugar for:

result = expr
return result

return without an expression is a short notation for return result if the proc has a return type. The result variable is always the return value of the procedure. It is automatically declared by the compiler. As all variables, result is initialized to (binary) zero:

proc returnZero(): int =
  # implicitly returns 0

Yield statement

Example:

yield (1, 2, 3)

The yield statement is used instead of the return statement in iterators. It is only valid in iterators. Execution is returned to the body of the for loop that called the iterator. Yield does not end the iteration process, but execution is passed back to the iterator if the next iteration starts. See the section about iterators (Iterators and the for statement) for further information.

Block statement

Example:

var found = false
block myblock:
  for i in 0..3:
    for j in 0..3:
      if a[j][i] == 7:
        found = true
        break myblock # leave the block, in this case both for-loops
echo(found)

The block statement is a means to group statements to a (named) block. Inside the block, the break statement is allowed to leave the block immediately. A break statement can contain a name of a surrounding block to specify which block is to leave.

Break statement

Example:

break

The break statement is used to leave a block immediately. If symbol is given, it is the name of the enclosing block that is to leave. If it is absent, the innermost block is left.

While statement

Example:

echo("Please tell me your password: \n")
var pw = readLine(stdin)
while pw != "12345":
  echo("Wrong password! Next try: \n")
  pw = readLine(stdin)

The while statement is executed until the expr evaluates to false. Endless loops are no error. while statements open an implicit block, so that they can be left with a break statement.

Continue statement

A continue statement leads to the immediate next iteration of the surrounding loop construct. It is only allowed within a loop. A continue statement is syntactic sugar for a nested block:

while expr1:
  stmt1
  continue
  stmt2

Is equivalent to:

while expr1:
  block myBlockName:
    stmt1
    break myBlockName
    stmt2

Assembler statement

The direct embedding of assembler code into Nimrod code is supported by the unsafe asm statement. Identifiers in the assembler code that refer to Nimrod identifiers shall be enclosed in a special character which can be specified in the statement's pragmas. The default special character is '`':

{.push stackTrace:off.}
proc addInt(a, b: int): int =
  # a in eax, and b in edx
  asm """
      mov eax, `a`
      add eax, `b`
      jno theEnd
      call `raiseOverflow`
    theEnd:
  """
{.pop.}

If the GNU assembler is used, quotes and newlines are inserted automatically:

proc addInt(a, b: int): int =
  asm """
    addl %%ecx, %%eax
    jno 1
    call `raiseOverflow`
    1:
    :"=a"(`result`)
    :"a"(`a`), "c"(`b`)
  """

Instead of:

proc addInt(a, b: int): int =
  asm """
    "addl %%ecx, %%eax\n"
    "jno 1\n"
    "call `raiseOverflow`\n"
    "1: \n"
    :"=a"(`result`)
    :"a"(`a`), "c"(`b`)
  """

Using statement

Warning: The using statement is highly experimental!

The using statement provides syntactic convenience for procs that heavily use a single contextual parameter. When applied to a variable or a constant, it will instruct Nimrod to automatically consider the used symbol as a hidden leading parameter for any procedure calls, following the using statement in the current scope. Thus, it behaves much like the hidden this parameter available in some object-oriented programming languages.

var s = socket()
using s

connect(host, port)
send(data)

while true:
  let line = readLine(timeout)
  ...

When applied to a callable symbol, it brings the designated symbol in the current scope. Thus, it can be used to disambiguate between imported symbols from different modules having the same name.

import windows, sdl
using sdl.SetTimer

Note that using only adds to the current context, it doesn't remove or replace, neither does it create a new scope. What this means is that if one applies this to multiple variables the compiler will find conflicts in what variable to use:

var a, b = "kill it"
using a
add(" with fire")
using b
add(" with water")
echo a
echo b

When the compiler reaches the second add call, both a and b could be used with the proc, so one gets Error: expression '(a|b)' has no type (or is ambiguous). To solve this you would need to nest using with a block statement so as to control the reach of the using statement.

If expression

An if expression is almost like an if statement, but it is an expression. Example:

var y = if x > 8: 9 else: 10

An if expression always results in a value, so the else part is required. Elif parts are also allowed.

When expression

Just like an if expression, but corresponding to the when statement.

Case expression

The case expression is again very similar to the case statement:

var favoriteFood = case animal
  of "dog": "bones"
  of "cat": "mice"
  elif animal.endsWith"whale": "plankton"
  else:
    echo "I'm not sure what to serve, but everybody loves ice cream"
    "ice cream"

As seen in the above example, the case expression can also introduce side effects. When multiple statements are given for a branch, Nimrod will use the last expression as the result value, much like in an expr template.

Table constructor

A table constructor is syntactic sugar for an array constructor:

{"key1": "value1", "key2", "key3": "value2"}

# is the same as:
[("key1", "value1"), ("key2", "value2"), ("key3", "value2")]

The empty table can be written {:} (in contrast to the empty set which is {}) which is thus another way to write as the empty array constructor []. This slightly unusal way of supporting tables has lots of advantages:

Type conversions

Syntactically a type conversion is like a procedure call, but a type name replaces the procedure name. A type conversion is always safe in the sense that a failure to convert a type to another results in an exception (if it cannot be determined statically).

Type casts

Example:

cast[int](x)

Type casts are a crude mechanism to interpret the bit pattern of an expression as if it would be of another type. Type casts are only needed for low-level programming and are inherently unsafe.

The addr operator

The addr operator returns the address of an l-value. If the type of the location is T, the addr operator result is of the type ptr T. An address is always an untraced reference. Taking the address of an object that resides on the stack is unsafe, as the pointer may live longer than the object on the stack and can thus reference a non-existing object. One can get the address of variables, but one can't use it on variables declared through let statements:

let t1 = "Hello"
var
  t2 = t1
  t3 : pointer = addr(t2)
echo repr(addr(t2))
# --> ref 0x7fff6b71b670 --> 0x10bb81050"Hello"
echo cast[ptr string](t3)[]
# --> Hello
# The following line doesn't compile:
echo repr(addr(t1))
# Error: expression has no address

Procedures

What most programming languages call methods or functions are called procedures in Nimrod (which is the correct terminology). A procedure declaration defines an identifier and associates it with a block of code. A procedure may call itself recursively. A parameter may be given a default value that is used if the caller does not provide a value for this parameter.

If the proc declaration has no body, it is a forward declaration. If the proc returns a value, the procedure body can access an implicitly declared variable named result that represents the return value. Procs can be overloaded. The overloading resolution algorithm tries to find the proc that is the best match for the arguments. Example:

proc toLower(c: Char): Char = # toLower for characters
  if c in {'A'..'Z'}:
    result = chr(ord(c) + (ord('a') - ord('A')))
  else:
    result = c

proc toLower(s: string): string = # toLower for strings
  result = newString(len(s))
  for i in 0..len(s) - 1:
    result[i] = toLower(s[i]) # calls toLower for characters; no recursion!

Calling a procedure can be done in many different ways:

proc callme(x, y: int, s: string = "", c: char, b: bool = false) = ...

# call with positional arguments # parameter bindings:
callme(0, 1, "abc", '\t', true)  # (x=0, y=1, s="abc", c='\t', b=true)
# call with named and positional arguments:
callme(y=1, x=0, "abd", '\t')    # (x=0, y=1, s="abd", c='\t', b=false)
# call with named arguments (order is not relevant):
callme(c='\t', y=1, x=0)         # (x=0, y=1, s="", c='\t', b=false)
# call as a command statement: no () needed:
callme 0, 1, "abc", '\t'

A procedure cannot modify its parameters (unless the parameters have the type var).

Operators are procedures with a special operator symbol as identifier:

proc `$` (x: int): string =
  # converts an integer to a string; this is a prefix operator.
  result = intToStr(x)

Operators with one parameter are prefix operators, operators with two parameters are infix operators. (However, the parser distinguishes these from the operator's position within an expression.) There is no way to declare postfix operators: all postfix operators are built-in and handled by the grammar explicitly.

Any operator can be called like an ordinary proc with the 'opr' notation. (Thus an operator can have more than two parameters):

proc `*+` (a, b, c: int): int =
  # Multiply and add
  result = a * b + c

assert `*+`(3, 4, 6) == `*`(a, `+`(b, c))

Method call syntax

For object oriented programming, the syntax obj.method(args) can be used instead of method(obj, args). The parentheses can be omitted if there are no remaining arguments: obj.len (instead of len(obj)).

This method call syntax is not restricted to objects, it can be used to supply any type of first argument for procedures:

echo("abc".len) # is the same as echo(len("abc"))
echo("abc".toUpper())
echo({'a', 'b', 'c'}.card)
stdout.writeln("Hallo") # the same as writeln(stdout, "Hallo")

Another way to look at the method call syntax is that it provides the missing postfix notation.

Properties

Nimrod has no need for get-properties: Ordinary get-procedures that are called with the method call syntax achieve the same. But setting a value is different; for this a special setter syntax is needed:

type
  TSocket* = object of TObject
    FHost: int # cannot be accessed from the outside of the module
               # the `F` prefix is a convention to avoid clashes since
               # the accessors are named `host`

proc `host=`*(s: var TSocket, value: int) {.inline.} =
  ## setter of hostAddr
  s.FHost = value

proc host*(s: TSocket): int {.inline.} =
  ## getter of hostAddr
  s.FHost

var
  s: TSocket
s.host = 34  # same as `host=`(s, 34)

Command invocation syntax

Routines can be invoked without the () if the call is syntatically a statement. This command invocation syntax also works for expressions, but then only a single argument may follow. This restriction means echo f 1, f 2 is parsed as echo(f(1), f(2)) and not as echo(f(1, f(2))). The method call syntax may be used to provide one more argument in this case:

proc optarg(x:int, y:int = 0):int = x + y
proc singlearg(x:int):int = 20*x

echo optarg 1, " ", singlearg 2  # prints "1 40"

let fail = optarg 1, optarg 8   # Wrong. Too many arguments for a command call
let x = optarg(1, optarg 8)  # traditional procedure call with 2 arguments
let y = 1.optarg optarg 8    # same thing as above, w/o the parenthesis
assert x == y

The command invocation syntax also can't have complex expressions as arguments. For example: (anonymous procs), if, case or try. The (do notation) is limited, but usable for a single proc (see the example in the corresponding section). Function calls with no arguments still needs () to distinguish between a call and the function itself as a first class value.

Closures

Procedures can appear at the top level in a module as well as inside other scopes, in which case they are called nested procs. A nested proc can access local variables from its enclosing scope and if it does so it becomes a closure. Any captured variables are stored in a hidden additional argument to the closure (its environment) and they are accessed by reference by both the closure and its enclosing scope (i.e. any modifications made to them are visible in both places). The closure environment may be allocated on the heap or on the stack if the compiler determines that this would be safe.

Anonymous Procs

Procs can also be treated as expressions, in which case it's allowed to omit the proc's name.

var cities = @["Frankfurt", "Tokyo", "New York"]

cities.sort(proc (x,y: string): int =
    cmp(x.len, y.len))

Procs as expressions can appear both as nested procs and inside top level executable code.

Do notation

As a special more convenient notation, proc expressions involved in procedure calls can use the do keyword:

sort(cities) do (x,y: string) -> int:
  cmp(x.len, y.len)
# Less parenthesis using the method plus command syntax:
cities = cities.map do (x:string) -> string:
  "City of " & x

do is written after the parentheses enclosing the regular proc params. The proc expression represented by the do block is appended to them.

More than one do block can appear in a single call:

proc performWithUndo(task: proc(), undo: proc()) = ...

performWithUndo do:
  # multiple-line block of code
  # to perform the task
do:
  # code to undo it

For compatibility with stmt templates and macros, the do keyword can be omitted if the supplied proc doesn't have any parameters and return value. The compatibility works in the other direction too as the do syntax can be used with macros and templates expecting stmt blocks.

Nonoverloadable builtins

The following builtin procs cannot be overloaded for reasons of implementation simplicity (they require specialized semantic checking):

defined, definedInScope, compiles, low, high, sizeOf,
is, of, echo, shallowCopy, getAst, spawn

Thus they act more like keywords than like ordinary identifiers; unlike a keyword however, a redefinition may shadow the definition in the system module.

Var parameters

The type of a parameter may be prefixed with the var keyword:

proc divmod(a, b: int; res, remainder: var int) =
  res = a div b
  remainder = a mod b

var
  x, y: int

divmod(8, 5, x, y) # modifies x and y
assert x == 1
assert y == 3

In the example, res and remainder are var parameters. Var parameters can be modified by the procedure and the changes are visible to the caller. The argument passed to a var parameter has to be an l-value. Var parameters are implemented as hidden pointers. The above example is equivalent to:

proc divmod(a, b: int; res, remainder: ptr int) =
  res[] = a div b
  remainder[] = a mod b

var
  x, y: int
divmod(8, 5, addr(x), addr(y))
assert x == 1
assert y == 3

In the examples, var parameters or pointers are used to provide two return values. This can be done in a cleaner way by returning a tuple:

proc divmod(a, b: int): tuple[res, remainder: int] =
  (a div b, a mod b)

var t = divmod(8, 5)

assert t.res == 1
assert t.remainder == 3

One can use tuple unpacking to access the tuple's fields:

var (x, y) = divmod(8, 5) # tuple unpacking
assert x == 1
assert y == 3

Var return type

A proc, converter or iterator may return a var type which means that the returned value is an l-value and can be modified by the caller:

var g = 0

proc WriteAccessToG(): var int =
  result = g

WriteAccessToG() = 6
assert g == 6

It is a compile time error if the implicitly introduced pointer could be used to access a location beyond its lifetime:

proc WriteAccessToG(): var int =
  var g = 0
  result = g # Error!

For iterators, a component of a tuple return type can have a var type too:

iterator mpairs(a: var seq[string]): tuple[key: int, val: var string] =
  for i in 0..a.high:
    yield (i, a[i])

In the standard library every name of a routine that returns a var type starts with the prefix m per convention.

Overloading of the subscript operator

The [] subscript operator for arrays/openarrays/sequences can be overloaded.

Multi-methods

Procedures always use static dispatch. Multi-methods use dynamic dispatch.

type
  TExpr = object ## abstract base class for an expression
  TLiteral = object of TExpr
    x: int
  TPlusExpr = object of TExpr
    a, b: ref TExpr

method eval(e: ref TExpr): int =
  # override this base method
  quit "to override!"

method eval(e: ref TLiteral): int = return e.x

method eval(e: ref TPlusExpr): int =
  # watch out: relies on dynamic binding
  result = eval(e.a) + eval(e.b)

proc newLit(x: int): ref TLiteral =
  new(result)
  result.x = x

proc newPlus(a, b: ref TExpr): ref TPlusExpr =
  new(result)
  result.a = a
  result.b = b

echo eval(newPlus(newPlus(newLit(1), newLit(2)), newLit(4)))

In the example the constructors newLit and newPlus are procs because they should use static binding, but eval is a method because it requires dynamic binding.

In a multi-method all parameters that have an object type are used for the dispatching:

type
  TThing = object
  TUnit = object of TThing
    x: int

method collide(a, b: TThing) {.inline.} =
  quit "to override!"

method collide(a: TThing, b: TUnit) {.inline.} =
  echo "1"

method collide(a: TUnit, b: TThing) {.inline.} =
  echo "2"

var
  a, b: TUnit
collide(a, b) # output: 2

Invocation of a multi-method cannot be ambiguous: collide 2 is preferred over collide 1 because the resolution works from left to right. In the example TUnit, TThing is preferred over TThing, TUnit.

Performance note: Nimrod does not produce a virtual method table, but generates dispatch trees. This avoids the expensive indirect branch for method calls and enables inlining. However, other optimizations like compile time evaluation or dead code elimination do not work with methods.

Iterators and the for statement

The for statement is an abstract mechanism to iterate over the elements of a container. It relies on an iterator to do so. Like while statements, for statements open an implicit block, so that they can be left with a break statement.

The for loop declares iteration variables - their scope reaches until the end of the loop body. The iteration variables' types are inferred by the return type of the iterator.

An iterator is similar to a procedure, except that it can be called in the context of a for loop. Iterators provide a way to specify the iteration over an abstract type. A key role in the execution of a for loop plays the yield statement in the called iterator. Whenever a yield statement is reached the data is bound to the for loop variables and control continues in the body of the for loop. The iterator's local variables and execution state are automatically saved between calls. Example:

# this definition exists in the system module
iterator items*(a: string): char {.inline.} =
  var i = 0
  while i < len(a):
    yield a[i]
    inc(i)

for ch in items("hello world"): # `ch` is an iteration variable
  echo(ch)

The compiler generates code as if the programmer would have written this:

var i = 0
while i < len(a):
  var ch = a[i]
  echo(ch)
  inc(i)

If the iterator yields a tuple, there can be as many iteration variables as there are components in the tuple. The i'th iteration variable's type is the type of the i'th component. In other words, implicit tuple unpacking in a for loop context is supported.

Implict items/pairs invocations

If the for loop expression e does not denote an iterator and the for loop has exactly 1 variable, the for loop expression is rewritten to items(e); ie. an items iterator is implicitly invoked:

for x in [1,2,3]: echo x

If the for loop has exactly 2 variables, a pairs iterator is implicitly invoked.

Symbol lookup of the identifiers items/pairs is performed after the rewriting step, so that all overloadings of items/pairs are taken into account.

First class iterators

There are 2 kinds of iterators in Nimrod: inline and closure iterators. An inline iterator is an iterator that's always inlined by the compiler leading to zero overhead for the abstraction, but may result in a heavy increase in code size. Inline iterators are second class citizens; They can be passed as parameters only to other inlining code facilities like templates, macros and other inline iterators.

In contrast to that, a closure iterator can be passed around more freely:

iterator count0(): int {.closure.} =
  yield 0

iterator count2(): int {.closure.} =
  var x = 1
  yield x
  inc x
  yield x

proc invoke(iter: iterator(): int {.closure.}) =
  for x in iter(): echo x

invoke(count0)
invoke(count2)

Closure iterators have other restrictions than inline iterators:

  1. yield in a closure iterator can not occur in a try statement.
  2. For now, a closure iterator cannot be evaluated at compile time.
  3. return is allowed in a closure iterator (but rarely useful).
  4. Both inline and closure iterators cannot be recursive.

Iterators that are neither marked {.closure.} nor {.inline.} explicitly default to being inline, but that this may change in future versions of the implementation.

The iterator type is always of the calling convention closure implicitly; the following example shows how to use iterators to implement a collaborative tasking system:

# simple tasking:
type
  TTask = iterator (ticker: int)

iterator a1(ticker: int) {.closure.} =
  echo "a1: A"
  yield
  echo "a1: B"
  yield
  echo "a1: C"
  yield
  echo "a1: D"

iterator a2(ticker: int) {.closure.} =
  echo "a2: A"
  yield
  echo "a2: B"
  yield
  echo "a2: C"

proc runTasks(t: varargs[TTask]) =
  var ticker = 0
  while true:
    let x = t[ticker mod t.len]
    if finished(x): break
    x(ticker)
    inc ticker

runTasks(a1, a2)

The builtin system.finished can be used to determine if an iterator has finished its operation; no exception is raised on an attempt to invoke an iterator that has already finished its work.

Closure iterators are resumable functions and so one has to provide the arguments to every call. To get around this limitation one can capture parameters of an outer factory proc:

proc mycount(a, b: int): iterator (): int =
  result = iterator (): int =
    var x = a
    while x <= b:
      yield x
      inc x

let foo = mycount(1, 4)

for f in foo():
  echo f

Implicit return type

Since inline interators must always produce values that will be consumed in a for loop, the compiler will implicity use the auto return type if no type is given by the user. In contrast, since closure iterators can be used as a collaborative tasking system, void is a valid return type for them.

Type sections

Example:

type # example demonstrating mutually recursive types
  PNode = ref TNode # a traced pointer to a TNode
  TNode = object
    le, ri: PNode   # left and right subtrees
    sym: ref TSym   # leaves contain a reference to a TSym
  
  TSym = object     # a symbol
    name: string    # the symbol's name
    line: int       # the line the symbol was declared in
    code: PNode     # the symbol's abstract syntax tree

A type section begins with the type keyword. It contains multiple type definitions. A type definition binds a type to a name. Type definitions can be recursive or even mutually recursive. Mutually recursive types are only possible within a single type section. Nominal types like objects or enums can only be defined in a type section.

Exception handling

Try statement

Example:

# read the first two lines of a text file that should contain numbers
# and tries to add them
var
  f: TFile
if open(f, "numbers.txt"):
  try:
    var a = readLine(f)
    var b = readLine(f)
    echo("sum: " & $(parseInt(a) + parseInt(b)))
  except EOverflow:
    echo("overflow!")
  except EInvalidValue:
    echo("could not convert string to integer")
  except EIO:
    echo("IO error!")
  except:
    echo("Unknown exception!")
  finally:
    close(f)

The statements after the try are executed in sequential order unless an exception e is raised. If the exception type of e matches any listed in an except clause the corresponding statements are executed. The statements following the except clauses are called exception handlers.

The empty except clause is executed if there is an exception that is not listed otherwise. It is similar to an else clause in if statements.

If there is a finally clause, it is always executed after the exception handlers.

The exception is consumed in an exception handler. However, an exception handler may raise another exception. If the exception is not handled, it is propagated through the call stack. This means that often the rest of the procedure - that is not within a finally clause - is not executed (if an exception occurs).

Except and finally statements

except and finally can also be used as a stand-alone statements. Any statements following them in the current block will be considered to be in an implicit try block:

var f = open("numbers.txt")
finally: close(f)
...

The except statement has a limitation in this form: one can't specify the type of the exception, one has to catch everything. Also, if one wants to use both finally and except one needs to reverse the usual sequence of the statements. Example:

proc test() =
  raise newException(E_base, "Hey ho")

proc tester() =
  finally: echo "3. Finally block"
  except: echo "2. Except block"
  echo "1. Pre exception"
  test()
  echo "4. Post exception"
# --> 1, 2, 3 is printed, 4 is never reached

Raise statement

Example:

raise newEOS("operating system failed")

Apart from built-in operations like array indexing, memory allocation, etc. the raise statement is the only way to raise an exception.

If no exception name is given, the current exception is re-raised. The ENoExceptionToReraise exception is raised if there is no exception to re-raise. It follows that the raise statement always raises an exception (unless a raise hook has been provided).

OnRaise builtin

system.onRaise() can be used to override the behaviour of raise for a single try statement. onRaise has to be called within the try statement that should be affected.

This allows for a Lisp-like condition system:

var myFile = open("broken.txt", fmWrite)
try:
  onRaise do (e: ref E_Base)-> bool:
    if e of EIO:
      stdout.writeln "ok, writing to stdout instead"
    else:
      # do raise other exceptions:
      result = true
  myFile.writeln "writing to broken file"
finally:
  myFile.close()

OnRaise can only filter raised exceptions, it cannot transform one exception into another. (Nor should onRaise raise an exception though this is currently not enforced.) This restriction keeps the exception tracking analysis sound.

Effect system

Exception tracking

Nimrod supports exception tracking. The raises pragma can be used to explicitly define which exceptions a proc/iterator/method/converter is allowed to raise. The compiler verifies this:

proc p(what: bool) {.raises: [EIO, EOS].} =
  if what: raise newException(EIO, "IO")
  else: raise newException(EOS, "OS")

An empty raises list (raises: []) means that no exception may be raised:

proc p(): bool {.raises: [].} =
  try:
    unsafeCall()
    result = true
  except:
    result = false

A raises list can also be attached to a proc type. This affects type compatibility:

type
  TCallback = proc (s: string) {.raises: [EIO].}
var
  c: TCallback

proc p(x: string) =
  raise newException(EOS, "OS")

c = p # type error

For a routine p the compiler uses inference rules to determine the set of possibly raised exceptions; the algorithm operates on p's call graph:

  1. Every indirect call via some proc type T is assumed to raise system.E_Base (the base type of the exception hierarchy) and thus any exception unless T has an explicit raises list. However if the call is of the form f(...) where f is a parameter of the currently analysed routine it is ignored. The call is optimistically assumed to have no effect. Rule 2 compensates for this case.
  2. Every expression of some proc type wihtin a call that is not a call itself (and not nil) is assumed to be called indirectly somehow and thus its raises list is added to p's raises list.
  3. Every call to a proc q which has an unknown body (due to a forward declaration or an importc pragma) is assumed to raise system.E_Base unless q has an explicit raises list.
  4. Every call to a method m is assumed to raise system.E_Base unless m has an explicit raises list.
  5. For every other call the analysis can determine an exact raises list.
  6. For determining a raises list, the raise and try statements of p are taken into consideration.

Rules 1-2 ensure the following works:

proc noRaise(x: proc()) {.raises: [].} =
  # unknown call that might raise anything, but valid:
  x()

proc doRaise() {.raises: [EIO].} =
  raise newException(EIO, "IO")

proc use() {.raises: [].} =
  # doesn't compile! Can raise EIO!
  noRaise(doRaise)

So in many cases a callback does not cause the compiler to be overly conservative in its effect analysis.

Tag tracking

The exception tracking is part of Nimrod's effect system. Raising an exception is an effect. Other effects can also be defined. A user defined effect is a means to tag a routine and to perform checks against this tag:

type IO = object ## input/output effect
proc readLine(): string {.tags: [IO].}

proc no_IO_please() {.tags: [].} =
  # the compiler prevents this:
  let x = readLine()

A tag has to be a type name. A tags list - like a raises list - can also be attached to a proc type. This affects type compatibility.

The inference for tag tracking is analogous to the inference for exception tracking.

Read/Write tracking

Note: Read/write tracking is not yet implemented!

The inference for read/write tracking is analogous to the inference for exception tracking.

Effects pragma

The effects pragma has been designed to assist the programmer with the effects analysis. It is a statement that makes the compiler output all inferred effects up to the effects's position:

proc p(what: bool) =
  if what:
    raise newException(EIO, "IO")
    {.effects.}
  else:
    raise newException(EOS, "OS")

The compiler produces a hint message that EIO can be raised. EOS is not listed as it cannot be raised in the branch the effects pragma appears in.

Generics

Example:

type
  TBinaryTree[T] = object      # TBinaryTree is a generic type with
                               # with generic param ``T``
    le, ri: ref TBinaryTree[T] # left and right subtrees; may be nil
    data: T                    # the data stored in a node
  PBinaryTree[T] = ref TBinaryTree[T] # a shorthand for notational convenience

proc newNode[T](data: T): PBinaryTree[T] = # constructor for a node
  new(result)
  result.data = data

proc add[T](root: var PBinaryTree[T], n: PBinaryTree[T]) =
  if root == nil:
    root = n
  else:
    var it = root
    while it != nil:
      var c = cmp(it.data, n.data) # compare the data items; uses
                                   # the generic ``cmp`` proc that works for
                                   # any type that has a ``==`` and ``<``
                                   # operator
      if c < 0:
        if it.le == nil:
          it.le = n
          return
        it = it.le
      else:
        if it.ri == nil:
          it.ri = n
          return
        it = it.ri

iterator inorder[T](root: PBinaryTree[T]): T =
  # inorder traversal of a binary tree
  # recursive iterators are not yet implemented, so this does not work in
  # the current compiler!
  if root.le != nil: yield inorder(root.le)
  yield root.data
  if root.ri != nil: yield inorder(root.ri)

var
  root: PBinaryTree[string] # instantiate a PBinaryTree with the type string
add(root, newNode("hallo")) # instantiates generic procs ``newNode`` and
add(root, newNode("world")) # ``add``
for str in inorder(root):
  writeln(stdout, str)

Generics are Nimrod's means to parametrize procs, iterators or types with type parameters. Depending on context, the brackets are used either to introduce type parameters or to instantiate a generic proc, iterator or type.

Is operator

The is operator checks for type equivalence at compile time. It is therefore very useful for type specialization within generic code:

type
  TTable[TKey, TValue] = object
    keys: seq[TKey]
    values: seq[TValue]
    when not (TKey is string): # nil value for strings used for optimization
      deletedKeys: seq[bool]

Type operator

The type (in many other languages called typeof) operator can be used to get the type of an expression:

var x = 0
var y: type(x) # y has type int

If type is used to determine the result type of a proc/iterator/converter call c(X) (where X stands for a possibly empty list of arguments), the interpretation where c is an iterator is preferred over the other interpretations:

import strutils

# strutils contains both a ``split`` proc and iterator, but since an
# an iterator is the preferred interpretation, `y` has the type ``string``:
var y: type("a b c".split)

Type Classes

A type class is a special pseudo-type that can be used to match against types in the context of overload resolution or the is operator. Nimrod supports the following built-in type classes:

type classmatches
objectany object type
tupleany tuple type
enumany enumeration
procany proc type
refany ref type
ptrany ptr type
varany var type
distinctany distinct type
arrayany array type
setany set type
seqany seq type
autoany type

Furthermore, every generic type automatically creates a type class of the same name that will match any instantiation of the generic type.

Type classes can be combined using the standard boolean operators to form more complex type classes:

# create a type class that will match all tuple and object types
type TRecordType = tuple or object

proc printFields(rec: TRecordType) =
  for key, value in fieldPairs(rec):
    echo key, " = ", value

Procedures utilizing type classes in such manner are considered to be implicitly generic. They will be instantiated once for each unique combination of param types used within the program.

Nimrod also allows for type classes and regular types to be specified as type constraints of the generic type parameter:

proc onlyIntOrString[T: int|string](x, y: T) = discard

onlyIntOrString(450, 616) # valid
onlyIntOrString(5.0, 0.0) # type mismatch
onlyIntOrString("xy", 50) # invalid as 'T' cannot be both at the same time

By default, during overload resolution each named type class will bind to exactly one concrete type. Here is an example taken directly from the system module to illustrate this:

proc `==`*(x, y: tuple): bool =
  ## requires `x` and `y` to be of the same tuple type
  ## generic ``==`` operator for tuples that is lifted from the components
  ## of `x` and `y`.
  result = true
  for a, b in fields(x, y):
    if a != b: result = false

Alternatively, the distinct type modifier can be applied to the type class to allow each param matching the type class to bind to a different type.

If a proc param doesn't have a type specified, Nimrod will use the distinct auto type class (also known as any):

# allow any combination of param types
proc concat(a, b): string = $a & $b

Procs written with the implicitly generic style will often need to refer to the type parameters of the matched generic type. They can be easily accessed using the dot syntax:

type TMatrix[T, Rows, Columns] = object
  ...

proc `[]`(m: TMatrix, row, col: int): TMatrix.T =
  m.data[col * high(TMatrix.Columns) + row]

Alternatively, the type operator can be used over the proc params for similar effect when anonymous or distinct type classes are used.

When a generic type is instantiated with a type class instead of a concrete type, this results in another more specific type class:

seq[ref object]  # Any sequence storing references to any object type

type T1 = auto
proc foo(s: seq[T1], e: T1)
  # seq[T1] is the same as just `seq`, but T1 will be allowed to bind
  # to a single type, while the signature is being matched

TMatrix[Ordinal] # Any TMatrix instantiation using integer values

As seen in the previous example, in such instantiations, it's not necessary to supply all type parameters of the generic type, because any missing ones will be inferred to have the equivalent of the any type class and thus they will match anything without discrimination.

User defined type classes

Note: User defined type classes are still in development.

The user-defined type classes are available in two flavours - declarative and imperative. Both are used to specify an arbitrary set of requirements that the matched type must satisfy.

Declarative type classes are written in the following form:

type
  Comparable = generic x, y
    (x < y) is bool
  
  Container[T] = generic c
    c.len is ordinal
    items(c) is iterator
    for value in c:
      type(value) is T

The type class will be matched if:

  1. all of the expressions within the body can be compiled for the tested type
  2. all statically evaluatable boolean expressions in the body must be true

The identifiers following the generic keyword represent instances of the currently matched type. These instances can act both as variables of the type, when used in contexts where a value is expected, and as the type itself when used in contexts where a type is expected.

Please note that the is operator allows one to easily verify the precise type signatures of the required operations, but since type inference and default parameters are still applied in the provided block, it's also possible to encode usage protocols that do not reveal implementation details.

As a special rule providing further convenience when writing type classes, any type value appearing in a callable expression will be treated as a variable of the designated type for overload resolution purposes, unless the type value was passed in its explicit typedesc[T] form:

type
  OutputStream = generic S
    write(var S, string)

Much like generics, the user defined type classes will be instantiated exactly once for each tested type and any static code included within them will also be executed once.

Return Type Inference

If a type class is used as the return type of a proc and it won't be bound to a concrete type by some of the proc params, Nimrod will infer the return type from the proc body. This is usually used with the auto type class:

proc makePair(a, b): auto = (first: a, second: b)

The return type will be treated as additional generic param and can be explicitly specified at call sites as any other generic param.

Future versions of Nimrod may also support overloading based on the return type of the overloads. In such settings, the expected result type at call sites may also influence the inferred return type.

Symbol lookup in generics

The symbol binding rules in generics are slightly subtle: There are "open" and "closed" symbols. A "closed" symbol cannot be re-bound in the instantiation context, an "open" symbol can. Per default overloaded symbols are open and every other symbol is closed.

Open symbols are looked up in two different contexts: Both the context at definition and the context at instantiation are considered:

type
  TIndex = distinct int

proc `==` (a, b: TIndex): bool {.borrow.}

var a = (0, 0.TIndex)
var b = (0, 0.TIndex)

echo a == b # works!

In the example the generic == for tuples (as defined in the system module) uses the == operators of the tuple's components. However, the == for the TIndex type is defined after the == for tuples; yet the example compiles as the instantiation takes the currently defined symbols into account too.

A symbol can be forced to be open by a mixin declaration:

proc create*[T](): ref T =
  # there is no overloaded 'init' here, so we need to state that it's an
  # open symbol explicitly:
  mixin init
  new result
  init result

Bind statement

The bind statement is the counterpart to the mixin statement. It can be used to explicitly declare identifiers that should be bound early (i.e. the identifiers should be looked up in the scope of the template/generic definition):

# Module A
var
  lastId = 0

template genId*: expr =
  bind lastId
  inc(lastId)
  lastId
# Module B
import A

echo genId()

But a bind is rarely useful because symbol binding from the definition scope is the default.

Templates

A template is a simple form of a macro: It is a simple substitution mechanism that operates on Nimrod's abstract syntax trees. It is processed in the semantic pass of the compiler.

The syntax to invoke a template is the same as calling a procedure.

Example:

template `!=` (a, b: expr): expr =
  # this definition exists in the System module
  not (a == b)

assert(5 != 6) # the compiler rewrites that to: assert(not (5 == 6))

The !=, >, >=, in, notin, isnot operators are in fact templates:

a > b is transformed into b < a.
a in b is transformed into contains(b, a).
notin and isnot have the obvious meanings.

The "types" of templates can be the symbols expr (stands for expression), stmt (stands for statement) or typedesc (stands for type description). These are "meta types", they can only be used in certain contexts. Real types can be used too; this implies that expressions are expected.

Ordinary vs immediate templates

There are two different kinds of templates: immediate templates and ordinary templates. Ordinary templates take part in overloading resolution. As such their arguments need to be type checked before the template is invoked. So ordinary templates cannot receive undeclared identifiers:

template declareInt(x: expr) =
  var x: int

declareInt(x) # error: unknown identifier: 'x'

An immediate template does not participate in overload resolution and so its arguments are not checked for semantics before invocation. So they can receive undeclared identifiers:

template declareInt(x: expr) {.immediate.} =
  var x: int

declareInt(x) # valid

Passing a code block to a template

If there is a stmt parameter it should be the last in the template declaration, because statements are passed to a template via a special : syntax:

template withFile(f, fn, mode: expr, actions: stmt): stmt {.immediate.} =
  var f: TFile
  if open(f, fn, mode):
    try:
      actions
    finally:
      close(f)
  else:
    quit("cannot open: " & fn)

withFile(txt, "ttempl3.txt", fmWrite):
  txt.writeln("line 1")
  txt.writeln("line 2")

In the example the two writeln statements are bound to the actions parameter.

Symbol binding in templates

A template is a hygienic macro and so opens a new scope. Most symbols are bound from the definition scope of the template:

# Module A
var
  lastId = 0

template genId*: expr =
  inc(lastId)
  lastId
# Module B
import A

echo genId() # Works as 'lastId' has been bound in 'genId's defining scope

As in generics symbol binding can be influenced via mixin or bind statements.

Identifier construction

In templates identifiers can be constructed with the backticks notation:

template typedef(name: expr, typ: typedesc) {.immediate.} =
  type
    `T name`* {.inject.} = typ
    `P name`* {.inject.} = ref `T name`

typedef(myint, int)
var x: PMyInt

In the example name is instantiated with myint, so `T name` becomes Tmyint.

Lookup rules for template parameters

A parameter p in a template is even substituted in the expression x.p. Thus template arguments can be used as field names and a global symbol can be shadowed by the same argument name even when fully qualified:

# module 'm'

type
  TLev = enum
    levA, levB

var abclev = levB

template tstLev(abclev: TLev) =
  echo abclev, " ", m.abclev

tstLev(levA)
# produces: 'levA levA'

But the global symbol can properly be captured by a bind statement:

# module 'm'

type
  TLev = enum
    levA, levB

var abclev = levB

template tstLev(abclev: TLev) =
  bind m.abclev
  echo abclev, " ", m.abclev

tstLev(levA)
# produces: 'levA levB'

Hygiene in templates

Per default templates are hygienic: Local identifiers declared in a template cannot be accessed in the instantiation context:

template newException*(exceptn: typedesc, message: string): expr =
  var
    e: ref exceptn  # e is implicitly gensym'ed here
  new(e)
  e.msg = message
  e

# so this works:
let e = "message"
raise newException(EIO, e)

Whether a symbol that is declared in a template is exposed to the instantiation scope is controlled by the inject and gensym pragmas: gensym'ed symbols are not exposed but inject'ed are.

The default for symbols of entity type, var, let and const is gensym and for proc, iterator, converter, template, macro is inject. However, if the name of the entity is passed as a template parameter, it is an inject'ed symbol:

template withFile(f, fn, mode: expr, actions: stmt): stmt {.immediate.} =
  block:
    var f: TFile  # since 'f' is a template param, it's injected implicitly
    ...

withFile(txt, "ttempl3.txt", fmWrite):
  txt.writeln("line 1")
  txt.writeln("line 2")

The inject and gensym pragmas are second class annotations; they have no semantics outside of a template definition and cannot be abstracted over:

{.pragma myInject: inject.}

template t() =
  var x {.myInject.}: int # does NOT work

To get rid of hygiene in templates, one can use the dirty pragma for a template. inject and gensym have no effect in dirty templates.

Macros

A macro is a special kind of low level template. Macros can be used to implement domain specific languages. Like templates, macros come in the 2 flavors immediate and ordinary.

While macros enable advanced compile-time code transformations, they cannot change Nimrod's syntax. However, this is no real restriction because Nimrod's syntax is flexible enough anyway.

To write macros, one needs to know how the Nimrod concrete syntax is converted to an abstract syntax tree.

There are two ways to invoke a macro:

  1. invoking a macro like a procedure call (expression macros)
  2. invoking a macro with the special macrostmt syntax (statement macros)

Expression Macros

The following example implements a powerful debug command that accepts a variable number of arguments:

# to work with Nimrod syntax trees, we need an API that is defined in the
# ``macros`` module:
import macros

macro debug(n: varargs[expr]): stmt =
  # `n` is a Nimrod AST that contains the whole macro invocation
  # this macro returns a list of statements:
  result = newNimNode(nnkStmtList, n)
  # iterate over any argument that is passed to this macro:
  for i in 0..n.len-1:
    # add a call to the statement list that writes the expression;
    # `toStrLit` converts an AST to its string representation:
    add(result, newCall("write", newIdentNode("stdout"), toStrLit(n[i])))
    # add a call to the statement list that writes ": "
    add(result, newCall("write", newIdentNode("stdout"), newStrLitNode(": ")))
    # add a call to the statement list that writes the expressions value:
    add(result, newCall("writeln", newIdentNode("stdout"), n[i]))

var
  a: array [0..10, int]
  x = "some string"
a[0] = 42
a[1] = 45

debug(a[0], a[1], x)

The macro call expands to:

write(stdout, "a[0]")
write(stdout, ": ")
writeln(stdout, a[0])

write(stdout, "a[1]")
write(stdout, ": ")
writeln(stdout, a[1])

write(stdout, "x")
write(stdout, ": ")
writeln(stdout, x)

Arguments that are passed to a varargs parameter are wrapped in an array constructor expression. This is why debug iterates over all of n's children.

BindSym

The above debug macro relies on the fact that write, writeln and stdout are declared in the system module and thus visible in the instantiating context. There is a way to use bound identifiers (aka symbols) instead of using unbound identifiers. The bindSym builtin can be used for that:

import macros

macro debug(n: varargs[expr]): stmt =
  result = newNimNode(nnkStmtList, n)
  for i in 0..n.len-1:
    # we can bind symbols in scope via 'bindSym':
    add(result, newCall(bindSym"write", bindSym"stdout", toStrLit(n[i])))
    add(result, newCall(bindSym"write", bindSym"stdout", newStrLitNode(": ")))
    add(result, newCall(bindSym"writeln", bindSym"stdout", n[i]))

var
  a: array [0..10, int]
  x = "some string"
a[0] = 42
a[1] = 45

debug(a[0], a[1], x)

The macro call expands to:

write(stdout, "a[0]")
write(stdout, ": ")
writeln(stdout, a[0])

write(stdout, "a[1]")
write(stdout, ": ")
writeln(stdout, a[1])

write(stdout, "x")
write(stdout, ": ")
writeln(stdout, x)

However, the symbols write, writeln and stdout are already bound and are not looked up again. As the example shows, bindSym does work with overloaded symbols implicitly.

Statement Macros

Statement macros are defined just as expression macros. However, they are invoked by an expression following a colon.

The following example outlines a macro that generates a lexical analyzer from regular expressions:

import macros

macro case_token(n: stmt): stmt =
  # creates a lexical analyzer from regular expressions
  # ... (implementation is an exercise for the reader :-)
  discard

case_token: # this colon tells the parser it is a macro statement
of r"[A-Za-z_]+[A-Za-z_0-9]*":
  return tkIdentifier
of r"0-9+":
  return tkInteger
of r"[\+\-\*\?]+":
  return tkOperator
else:
  return tkUnknown

Style note: For code readability, it is the best idea to use the least powerful programming construct that still suffices. So the "check list" is:

  1. Use an ordinary proc/iterator, if possible.
  2. Else: Use a generic proc/iterator, if possible.
  3. Else: Use a template, if possible.
  4. Else: Use a macro.

Macros as pragmas

Whole routines (procs, iterators etc.) can also be passed to a template or a macro via the pragma notation:

template m(s: stmt) = discard

proc p() {.m.} = discard

This is a simple syntactic transformation into:

template m(s: stmt) = discard

m:
  proc p() = discard

Special Types

static[T]

Note: static[T] is still in development.

As their name suggests, static params must be known at compile-time:

proc precompiledRegex(pattern: static[string]): TRegEx =
  var res {.global.} = re(pattern)
  return res

precompiledRegex("/d+") # Replaces the call with a precompiled
                        # regex, stored in a global variable

precompiledRegex(paramStr(1)) # Error, command-line options
                              # are not known at compile-time

For the purposes of code generation, all static params are treated as generic params - the proc will be compiled separately for each unique supplied value (or combination of values).

Furthermore, the system module defines a semistatic[T] type than can be used to declare procs accepting both static and run-time values, which can optimize their body according to the supplied param using the isStatic(p) predicate:

# The following proc will be compiled once for each unique static
# value and also once for the case handling all run-time values:

proc re(pattern: semistatic[string]): TRegEx =
  when isStatic(pattern):
    result = precompiledRegex(pattern)
  else:
    result = compile(pattern)

Static params can also appear in the signatures of generic types:

type
  Matrix[M,N: static[int]; T: Number] = array[0..(M*N - 1), T]
    # Note how `Number` is just a type constraint here, while
    # `static[int]` requires us to supply a compile-time int value
  
  AffineTransform2D[T] = Matrix[3, 3, T]
  AffineTransform3D[T] = Matrix[4, 4, T]

var m1: AffineTransform3D[float]  # OK
var m2: AffineTransform2D[string] # Error, `string` is not a `Number`

typedesc

typedesc is a special type allowing one to treat types as compile-time values (i.e. if types are compile-time values and all values have a type, then typedesc must be their type).

When used as a regular proc param, typedesc acts as a type class. The proc will be instantiated for each unique type parameter and one can refer to the instantiation type using the param name:

proc new(T: typedesc): ref T =
  echo "allocating ", T.name
  new(result)

var n = TNode.new
var tree = new(TBinaryTree[int])

When multiple typedesc params are present, they act like a distinct type class (i.e. they will bind freely to different types). To force a bind-once behavior one can use a named alias or an explicit typedesc generic param:

# `type1` and `type2` are aliases for typedesc available from system.nim
proc acceptOnlyTypePairs(A, B: type1; C, D: type2)
proc acceptOnlyTypePairs[T: typedesc, U: typedesc](A, B: T; C, D: U)

Once bound, typedesc params can appear in the rest of the proc signature:

template declareVariableWithType(T: typedesc, value: T) =
  var x: T = value

declareVariableWithType int, 42

When used with macros and .compileTime. procs on the other hand, the compiler does not need to instantiate the code multiple times, because types then can be manipulated using the unified internal symbol representation. In such context typedesc acts as any other type. One can create variables, store typedesc values inside containers and so on. For example, here is how one can create a type-safe wrapper for the unsafe printf function from C:

macro safePrintF(formatString: string{lit}, args: varargs[expr]): expr =
  var i = 0
  for c in formatChars(formatString):
    var expectedType = case c
      of 'c': char
      of 'd', 'i', 'x', 'X': int
      of 'f', 'e', 'E', 'g', 'G': float
      of 's': string
      of 'p': pointer
      else: EOutOfRange
    
    var actualType = args[i].getType
    inc i
    
    if expectedType == EOutOfRange:
      error c & " is not a valid format character"
    elif expectedType != actualType:
      error "type mismatch for argument ", i, ". expected type: ",
            expectedType.name, ", actual type: ", actualType.name
  
  # keep the original callsite, but use cprintf instead
  result = callsite()
  result[0] = newIdentNode(!"cprintf")

Overload resolution can be further influenced by constraining the set of types that will match the typedesc param:

template maxval(T: typedesc[int]): int = high(int)
template maxval(T: typedesc[float]): float = Inf

var i = int.maxval
var f = float.maxval
var s = string.maxval # error, maxval is not implemented for string

The constraint can be a concrete type or a type class.

Special Operators

dot operators

Nimrod offers a special family of dot operators that can be used to intercept and rewrite proc call and field access attempts, referring to previously undeclared symbol names. They can be used to provide a fluent interface to objects lying outside the static confines of the Nimrod's type system such as values from dynamic scripting languages or dynamic file formats such as JSON or XML.

When Nimrod encounters an expression that cannot be resolved by the standard overload resolution rules, the current scope will be searched for a dot operator that can be matched against a re-written form of the expression, where the unknown field or proc name is converted to an additional static string parameter:

a.b # becomes `.`(a, "b")
a.b(c, d) # becomes `.`(a, "b", c, d)

The matched dot operators can be symbols of any callable kind (procs, templates and macros), depending on the desired effect:

proc `.` (js: PJsonNode, field: string): JSON = js[field]

var js = parseJson("{ x: 1, y: 2}")
echo js.x # outputs 1
echo js.y # outputs 2

The following dot operators are available:

operator .

This operator will be matched against both field accesses and method calls.

operator .()

This operator will be matched exclusively against method calls. It has higher precedence than the . operator and this allows you to handle expressions like x.y and x.y() differently if you are interfacing with a scripting language for example.

operator .=

This operator will be matched against assignments to missing fields.

a.b = c # becomes `.=`(a, "b", c)

Term rewriting macros

Term rewriting macros are macros or templates that have not only a name but also a pattern that is searched for after the semantic checking phase of the compiler: This means they provide an easy way to enhance the compilation pipeline with user defined optimizations:

template optMul{`*`(a, 2)}(a: int): int = a+a

let x = 3
echo x * 2

The compiler now rewrites x * 2 as x + x. The code inside the curlies is the pattern to match against. The operators *, **, |, ~ have a special meaning in patterns if they are written in infix notation, so to match verbatim against * the ordinary function call syntax needs to be used.

Unfortunately optimizations are hard to get right and even the tiny example is wrong:

template optMul{`*`(a, 2)}(a: int): int = a+a

proc f(): int =
  echo "side effect!"
  result = 55

echo f() * 2

We cannot duplicate 'a' if it denotes an expression that has a side effect! Fortunately Nimrod supports side effect analysis:

template optMul{`*`(a, 2)}(a: int{noSideEffect}): int = a+a

proc f(): int =
  echo "side effect!"
  result = 55

echo f() * 2 # not optimized ;-)

So what about 2 * a? We should tell the compiler * is commutative. We cannot really do that however as the following code only swaps arguments blindly:

template mulIsCommutative{`*`(a, b)}(a, b: int): int = b*a

What optimizers really need to do is a canonicalization:

template canonMul{`*`(a, b)}(a: int{lit}, b: int): int = b*a

The int{lit} parameter pattern matches against an expression of type int, but only if it's a literal.

Parameter constraints

The parameter constraint expression can use the operators | (or), & (and) and ~ (not) and the following predicates:

PredicateMeaning
atomThe matching node has no children.
litThe matching node is a literal like "abc", 12.
symThe matching node must be a symbol (a bound identifier).
identThe matching node must be an identifier (an unbound identifier).
callThe matching AST must be a call/apply expression.
lvalueThe matching AST must be an lvalue.
sideeffectThe matching AST must have a side effect.
nosideeffectThe matching AST must have no side effect.
paramA symbol which is a parameter.
genericparamA symbol which is a generic parameter.
moduleA symbol which is a module.
typeA symbol which is a type.
varA symbol which is a variable.
letA symbol which is a let variable.
constA symbol which is a constant.
resultThe special result variable.
procA symbol which is a proc.
methodA symbol which is a method.
iteratorA symbol which is an iterator.
converterA symbol which is a converter.
macroA symbol which is a macro.
templateA symbol which is a template.
fieldA symbol which is a field in a tuple or an object.
enumfieldA symbol which is a field in an enumeration.
forvarA for loop variable.
labelA label (used in block statements).
nk*The matching AST must have the specified kind. (Example: nkIfStmt denotes an if statement.)
aliasStates that the marked parameter needs to alias with some other parameter.
noaliasStates that every other parameter must not alias with the marked parameter.

The alias and noalias predicates refer not only to the matching AST, but also to every other bound parameter; syntactially they need to occur after the ordinary AST predicates:

template ex{a = b + c}(a: int{noalias}, b, c: int) =
  # this transformation is only valid if 'b' and 'c' do not alias 'a':
  a = b
  inc a, c

Pattern operators

The operators *, **, |, ~ have a special meaning in patterns if they are written in infix notation.

The | operator

The | operator if used as infix operator creates an ordered choice:

template t{0|1}(): expr = 3
let a = 1
# outputs 3:
echo a

The matching is performed after the compiler performed some optimizations like constant folding, so the following does not work:

template t{0|1}(): expr = 3
# outputs 1:
echo 1

The reason is that the compiler already transformed the 1 into "1" for the echo statement. However, a term rewriting macro should not change the semantics anyway. In fact they can be deactived with the --patterns:off command line option or temporarily with the patterns pragma.

The {} operator

A pattern expression can be bound to a pattern parameter via the expr{param} notation:

template t{(0|1|2){x}}(x: expr): expr = x+1
let a = 1
# outputs 2:
echo a

The ~ operator

The ~ operator is the not operator in patterns:

template t{x = (~x){y} and (~x){z}}(x, y, z: bool): stmt =
  x = y
  if x: x = z

var
  a = false
  b = true
  c = false
a = b and c
echo a

The * operator

The * operator can flatten a nested binary expression like a & b & c to &(a, b, c):

var
  calls = 0

proc `&&`(s: varargs[string]): string =
  result = s[0]
  for i in 1..len(s)-1: result.add s[i]
  inc calls

template optConc{ `&&` * a }(a: string): expr = &&a

let space = " "
echo "my" && (space & "awe" && "some " ) && "concat"

# check that it's been optimized properly:
doAssert calls == 1

The second operator of * must be a parameter; it is used to gather all the arguments. The expression "my" && (space & "awe" && "some " ) && "concat" is passed to optConc in a as a special list (of kind nkArgList) which is flattened into a call expression; thus the invocation of optConc produces:

`&&`("my", space & "awe", "some ", "concat")

The ** operator

The ** is much like the * operator, except that it gathers not only all the arguments, but also the matched operators in reverse polish notation:

import macros

type
  TMatrix = object
    dummy: int

proc `*`(a, b: TMatrix): TMatrix = discard
proc `+`(a, b: TMatrix): TMatrix = discard
proc `-`(a, b: TMatrix): TMatrix = discard
proc `$`(a: TMatrix): string = result = $a.dummy
proc mat21(): TMatrix =
  result.dummy = 21

macro optM{ (`+`|`-`|`*`) ** a }(a: TMatrix): expr =
  echo treeRepr(a)
  result = newCall(bindSym"mat21")

var x, y, z: TMatrix

echo x + y * z - x

This passes the expression x + y * z - x to the optM macro as an nnkArgList node containing:

Arglist
  Sym "x"
  Sym "y"
  Sym "z"
  Sym "*"
  Sym "+"
  Sym "x"
  Sym "-"

(Which is the reverse polish notation of x + y * z - x.)

Parameters

Parameters in a pattern are type checked in the matching process. If a parameter is of the type varargs it is treated specially and it can match 0 or more arguments in the AST to be matched against:

template optWrite{
  write(f, x)
  ((write|writeln){w})(f, y)
}(x, y: varargs[expr], f: TFile, w: expr) =
  w(f, x, y)

Example: Partial evaluation

The following example shows how some simple partial evaluation can be implemented with term rewriting:

proc p(x, y: int; cond: bool): int =
  result = if cond: x + y else: x - y

template optP1{p(x, y, true)}(x, y: expr): expr = x + y
template optP2{p(x, y, false)}(x, y: expr): expr = x - y

Example: Hoisting

The following example shows how some form of hoisting can be implemented:

import pegs

template optPeg{peg(pattern)}(pattern: string{lit}): TPeg =
  var gl {.global, gensym.} = peg(pattern)
  gl

for i in 0 .. 3:
  echo match("(a b c)", peg"'(' @ ')'")
  echo match("W_HI_Le", peg"\y 'while'")

The optPeg template optimizes the case of a peg constructor with a string literal, so that the pattern will only be parsed once at program startup and stored in a global gl which is then re-used. This optimization is called hoisting because it is comparable to classical loop hoisting.

AST based overloading

Parameter constraints can also be used for ordinary routine parameters; these constraints affect ordinary overloading resolution then:

proc optLit(a: string{lit|`const`}) =
  echo "string literal"
proc optLit(a: string) =
  echo "no string literal"

const
  constant = "abc"

var
  variable = "xyz"

optLit("literal")
optLit(constant)
optLit(variable)

However, the constraints alias and noalias are not available in ordinary routines.

Move optimization

The call constraint is particularly useful to implement a move optimization for types that have copying semantics:

proc `[]=`*(t: var TTable, key: string, val: string) =
  ## puts a (key, value)-pair into `t`. The semantics of string require
  ## a copy here:
  let idx = findInsertionPosition(key)
  t[idx] = key
  t[idx] = val

proc `[]=`*(t: var TTable, key: string{call}, val: string{call}) =
  ## puts a (key, value)-pair into `t`. Optimized version that knows that
  ## the strings are unique and thus don't need to be copied:
  let idx = findInsertionPosition(key)
  shallowCopy t[idx], key
  shallowCopy t[idx], val

var t: TTable
# overloading resolution ensures that the optimized []= is called here:
t[f()] = g()

Modules

Nimrod supports splitting a program into pieces by a module concept. Each module needs to be in its own file and has its own namespace. Modules enable information hiding and separate compilation. A module may gain access to symbols of another module by the import statement. Recursive module dependencies are allowed, but slightly subtle. Only top-level symbols that are marked with an asterisk (*) are exported.

The algorithm for compiling modules is:

This is best illustrated by an example:

# Module A
type
  T1* = int  # Module A exports the type ``T1``
import B     # the compiler starts parsing B

proc main() =
  var i = p(3) # works because B has been parsed completely here

main()
# Module B
import A  # A is not parsed here! Only the already known symbols
          # of A are imported.

proc p*(x: A.T1): A.T1 =
  # this works because the compiler has already
  # added T1 to A's interface symbol table
  result = x + 1

Import statement

After the import statement a list of module names can follow or a single module name followed by an except to prevent some symbols to be imported:

import strutils except `%`

# doesn't work then:
echo "$1" % "abc"

Module names in imports

A module alias can be introduced via the as keyword:

import strutils as su, sequtils as qu

echo su.format("$1", "lalelu")

The original module name is then not accessible. The notations path/to/module or path.to.module or "path/to/module" can be used to refer to a module in subdirectories:

import lib.pure.strutils, lib/pure/os, "lib/pure/times"

Note that the module name is still strutils and not lib.pure.strutils and so one cannot do:

import lib.pure.strutils
echo lib.pure.strutils

Likewise the following does not make sense as the name is strutils already:

import lib.pure.strutils as strutils

From import statement

After the from statement a module name follows followed by an import to list the symbols one likes to use without explict full qualification:

from strutils import `%`

echo "$1" % "abc"
# always possible: full qualification:
echo strutils.replace("abc", "a", "z")

It's also possible to use from module import nil if one wants to import the module but wants to enforce fully qualified access to every symbol in module.

Export statement

An export statement can be used for symbol fowarding so that client modules don't need to import a module's dependencies:

# module B
type TMyObject* = object
# module A
import B
export B.TMyObject

proc `$`*(x: TMyObject): string = "my object"
# module C
import A

# B.TMyObject has been imported implicitly here:
var x: TMyObject
echo($x)

Scope rules

Identifiers are valid from the point of their declaration until the end of the block in which the declaration occurred. The range where the identifier is known is the scope of the identifier. The exact scope of an identifier depends on the way it was declared.

Block scope

The scope of a variable declared in the declaration part of a block is valid from the point of declaration until the end of the block. If a block contains a second block, in which the identifier is redeclared, then inside this block, the second declaration will be valid. Upon leaving the inner block, the first declaration is valid again. An identifier cannot be redefined in the same block, except if valid for procedure or iterator overloading purposes.

Tuple or object scope

The field identifiers inside a tuple or object definition are valid in the following places:

Module scope

All identifiers of a module are valid from the point of declaration until the end of the module. Identifiers from indirectly dependent modules are not available. The system module is automatically imported in every other module.

If a module imports an identifier by two different modules, each occurrence of the identifier has to be qualified, unless it is an overloaded procedure or iterator in which case the overloading resolution takes place:

# Module A
var x*: string
# Module B
var x*: int
# Module C
import A, B
write(stdout, x) # error: x is ambiguous
write(stdout, A.x) # no error: qualifier used

var x = 4
write(stdout, x) # not ambiguous: uses the module C's x

Compiler Messages

The Nimrod compiler emits different kinds of messages: hint, warning, and error messages. An error message is emitted if the compiler encounters any static error.

Pragmas

Pragmas are Nimrod's method to give the compiler additional information / commands without introducing a massive number of new keywords. Pragmas are processed on the fly during semantic checking. Pragmas are enclosed in the special {. and .} curly brackets. Pragmas are also often used as a first implementation to play with a language feature before a nicer syntax to access the feature becomes available.

noSideEffect pragma

The noSideEffect pragma is used to mark a proc/iterator to have no side effects. This means that the proc/iterator only changes locations that are reachable from its parameters and the return value only depends on the arguments. If none of its parameters have the type var T or ref T or ptr T this means no locations are modified. It is a static error to mark a proc/iterator to have no side effect if the compiler cannot verify this.

As a special semantic rule, the built-in debugEcho pretends to be free of side effects, so that it can be used for debugging routines marked as noSideEffect.

Future directions: func may become a keyword and syntactic sugar for a proc with no side effects:

func `+` (x, y: int): int

destructor pragma

The destructor pragma is used to mark a proc to act as a type destructor. The proc must have a single parameter with a concrete type (the name of a generic type is allowed too).

Destructors will be automatically invoked when a local stack variable goes out of scope.

If a record type features a field with destructable type and the user have not provided explicit implementation, Nimrod will automatically generate a destructor for the record type. Nimrod will automatically insert calls to any base class destructors in both user-defined and generated destructors.

A destructor is attached to the type it destructs; expressions of this type can then only be used in destructible contexts and as parameters:

type
  TMyObj = object
    x, y: int
    p: pointer

proc destruct(o: var TMyObj) {.destructor.} =
  if o.p != nil: dealloc o.p

proc open: TMyObj =
  result = TMyObj(x: 1, y: 2, p: alloc(3))

proc work(o: TMyObj) =
  echo o.x
  # No destructor invoked here for 'o' as 'o' is a parameter.

proc main() =
  # destructor automatically invoked at the end of the scope:
  var x = open()
  # valid: pass 'x' to some other proc:
  work(x)
  
  # Error: usage of a type with a destructor in a non destructible context
  echo open()

A destructible context is currently only the following:

  1. The expr in var x = expr.
  2. The expr in let x = expr.
  3. The expr in return expr.
  4. The expr in result = expr where result is the special symbol introduced by the compiler.

These rules ensure that the construction is tied to a variable and can easily be destructed at its scope exit. Later versions of the language will improve the support of destructors.

Be aware that destructors are not called for objects allocated with new. This may change in future versions of language, but for now use the finalizer parameter to new.

procvar pragma

The procvar pragma is used to mark a proc that it can be passed to a procedural variable.

compileTime pragma

The compileTime pragma is used to mark a proc to be used at compile time only. No code will be generated for it. Compile time procs are useful as helpers for macros.

noReturn pragma

The noreturn pragma is used to mark a proc that never returns.

Acyclic pragma

The acyclic pragma can be used for object types to mark them as acyclic even though they seem to be cyclic. This is an optimization for the garbage collector to not consider objects of this type as part of a cycle:

type
  PNode = ref TNode
  TNode {.acyclic, final.} = object
    left, right: PNode
    data: string

In the example a tree structure is declared with the TNode type. Note that the type definition is recursive and the GC has to assume that objects of this type may form a cyclic graph. The acyclic pragma passes the information that this cannot happen to the GC. If the programmer uses the acyclic pragma for data types that are in reality cyclic, the GC may leak memory, but nothing worse happens.

Future directions: The acyclic pragma may become a property of a ref type:

type
  PNode = acyclic ref TNode
  TNode = object
    left, right: PNode
    data: string

Final pragma

The final pragma can be used for an object type to specify that it cannot be inherited from.

shallow pragma

The shallow pragma affects the semantics of a type: The compiler is allowed to make a shallow copy. This can cause serious semantic issues and break memory safety! However, it can speed up assignments considerably, because the semantics of Nimrod require deep copying of sequences and strings. This can be expensive, especially if sequences are used to build a tree structure:

type
  TNodeKind = enum nkLeaf, nkInner
  TNode {.final, shallow.} = object
    case kind: TNodeKind
    of nkLeaf:
      strVal: string
    of nkInner:
      children: seq[TNode]

Pure pragma

An object type can be marked with the pure pragma so that its type field which is used for runtime type identification is omitted. This is necessary for binary compatibility with other compiled languages.

AsmNoStackFrame pragma

A proc can be marked with the AsmNoStackFrame pragma to tell the compiler it should not generate a stack frame for the proc. There are also no exit statements like return result; generated and the generated C function is declared as __declspec(naked) or __attribute__((naked)) (depending on the used C compiler).

Note: This pragma should only be used by procs which consist solely of assembler statements.

error pragma

The error pragma is used to make the compiler output an error message with the given content. Compilation does not necessarily abort after an error though.

The error pragma can also be used to annotate a symbol (like an iterator or proc). The usage of the symbol then triggers a compile-time error. This is especially useful to rule out that some operation is valid due to overloading and type conversions:

## check that underlying int values are compared and not the pointers:
proc `==`(x, y: ptr int): bool {.error.}

fatal pragma

The fatal pragma is used to make the compiler output an error message with the given content. In contrast to the error pragma, compilation is guaranteed to be aborted by this pragma. Example:

when not defined(objc):
  {.fatal: "Compile this program with the objc command!".}

warning pragma

The warning pragma is used to make the compiler output a warning message with the given content. Compilation continues after the warning.

hint pragma

The hint pragma is used to make the compiler output a hint message with the given content. Compilation continues after the hint.

line pragma

The line pragma can be used to affect line information of the annotated statement as seen in stack backtraces:

template myassert*(cond: expr, msg = "") =
  if not cond:
    # change run-time line information of the 'raise' statement:
    {.line: InstantiationInfo().}:
      raise newException(EAssertionFailed, msg)

If the line pragma is used with a parameter, the parameter needs be a tuple[filename: string, line: int]. If it is used without a parameter, system.InstantiationInfo() is used.

linearScanEnd pragma

The linearScanEnd pragma can be used to tell the compiler how to compile a Nimrod case statement. Syntactically it has to be used as a statement:

case myInt
of 0:
  echo "most common case"
of 1:
  {.linearScanEnd.}
  echo "second most common case"
of 2: echo "unlikely: use branch table"
else: echo "unlikely too: use branch table for ", myInt

In the example, the case branches 0 and 1 are much more common than the other cases. Therefore the generated assembler code should test for these values first, so that the CPU's branch predictor has a good chance to succeed (avoiding an expensive CPU pipeline stall). The other cases might be put into a jump table for O(1) overhead, but at the cost of a (very likely) pipeline stall.

The linearScanEnd pragma should be put into the last branch that should be tested against via linear scanning. If put into the last branch of the whole case statement, the whole case statement uses linear scanning.

computedGoto pragma

The computedGoto pragma can be used to tell the compiler how to compile a Nimrod case in a while true statement. Syntactically it has to be used as a statement inside the loop:

type
  MyEnum = enum
    enumA, enumB, enumC, enumD, enumE

proc vm() =
  var instructions: array [0..100, MyEnum]
  instructions[2] = enumC
  instructions[3] = enumD
  instructions[4] = enumA
  instructions[5] = enumD
  instructions[6] = enumC
  instructions[7] = enumA
  instructions[8] = enumB
  
  instructions[12] = enumE
  var pc = 0
  while true:
    {.computedGoto.}
    let instr = instructions[pc]
    case instr
    of enumA:
      echo "yeah A"
    of enumC, enumD:
      echo "yeah CD"
    of enumB:
      echo "yeah B"
    of enumE:
      break
    inc(pc)

vm()

As the example shows computedGoto is mostly useful for interpreters. If the underlying backend (C compiler) does not support the computed goto extension the pragma is simply ignored.

unroll pragma

The unroll pragma can be used to tell the compiler that it should unroll a for or while loop for runtime efficiency:

proc searchChar(s: string, c: char): int =
  for i in 0 .. s.high:
    {.unroll: 4.}
    if s[i] == c: return i
  result = -1

In the above example, the search loop is unrolled by a factor 4. The unroll factor can be left out too; the compiler then chooses an appropriate unroll factor.

Note: Currently the compiler recognizes but ignores this pragma.

immediate pragma

See Ordinary vs immediate templates.

compilation option pragmas

The listed pragmas here can be used to override the code generation options for a section of code.

The implementation currently provides the following possible options (various others may be added later).

pragmaallowed valuesdescription
checkson|off Turns the code generation for all runtime checks on or off.
boundCheckson|off Turns the code generation for array bound checks on or off.
overflowCheckson|off Turns the code generation for over- or underflow checks on or off.
nilCheckson|off Turns the code generation for nil pointer checks on or off.
assertionson|off Turns the code generation for assertions on or off.
warningson|off Turns the warning messages of the compiler on or off.
hintson|off Turns the hint messages of the compiler on or off.
optimizationnone|speed|size Optimize the code for speed or size, or disable optimization.
patternson|off Turns the term rewriting templates/macros on or off.
callconvcdecl|...Specifies the default calling convention for all procedures (and procedure types) that follow.

Example:

{.checks: off, optimization: speed.}
# compile without runtime checks and optimize for speed

push and pop pragmas

The push/pop pragmas are very similar to the option directive, but are used to override the settings temporarily. Example:

{.push checks: off.}
# compile this section without runtime checks as it is
# speed critical
# ... some code ...
{.pop.} # restore old settings

register pragma

The register pragma is for variables only. It declares the variable as register, giving the compiler a hint that the variable should be placed in a hardware register for faster access. C compilers usually ignore this though and for good reasons: Often they do a better job without it anyway.

In highly specific cases (a dispatch loop of an bytecode interpreter for example) it may provide benefits, though.

global pragma

The global pragma can be applied to a variable within a proc to instruct the compiler to store it in a global location and initialize it once at program startup.

proc isHexNumber(s: string): bool =
  var pattern {.global.} = re"[0-9a-fA-F]+"
  result = s.match(pattern)

When used within a generic proc, a separate unique global variable will be created for each instantiation of the proc. The order of initialization of the created global variables within a module is not defined, but all of them will be initialized after any top-level variables in their originating module and before any variable in a module that imports it.

DeadCodeElim pragma

The deadCodeElim pragma only applies to whole modules: It tells the compiler to activate (or deactivate) dead code elimination for the module the pragma appears in.

The --deadCodeElim:on command line switch has the same effect as marking every module with {.deadCodeElim:on}. However, for some modules such as the GTK wrapper it makes sense to always turn on dead code elimination - no matter if it is globally active or not.

Example:

{.deadCodeElim: on.}

Pragma pragma

The pragma pragma can be used to declare user defined pragmas. This is useful because Nimrod's templates and macros do not affect pragmas. User defined pragmas are in a different module-wide scope than all other symbols. They cannot be imported from a module.

Example:

when appType == "lib":
  {.pragma: rtl, exportc, dynlib, cdecl.}
else:
  {.pragma: rtl, importc, dynlib: "client.dll", cdecl.}

proc p*(a, b: int): int {.rtl.} =
  result = a+b

In the example a new pragma named rtl is introduced that either imports a symbol from a dynamic library or exports the symbol for dynamic library generation.

Disabling certain messages

Nimrod generates some warnings and hints ("line too long") that may annoy the user. A mechanism for disabling certain messages is provided: Each hint and warning message contains a symbol in brackets. This is the message's identifier that can be used to enable or disable it:

{.hint[LineTooLong]: off.} # turn off the hint about too long lines

This is often better than disabling all warnings at once.

Foreign function interface

Nimrod's FFI (foreign function interface) is extensive and only the parts that scale to other future backends (like the LLVM/JavaScript backends) are documented here.

Importc pragma

The importc pragma provides a means to import a proc or a variable from C. The optional argument is a string containing the C identifier. If the argument is missing, the C name is the Nimrod identifier exactly as spelled:

proc printf(formatstr: cstring) {.header: "<stdio.h>", importc: "printf", varargs.}

Note that this pragma is somewhat of a misnomer: Other backends will provide the same feature under the same name. Also, if you are interfacing with C++ you can use the ImportCpp pragma and interfacing with Objective-C the ImportObjC pragma.

Exportc pragma

The exportc pragma provides a means to export a type, a variable, or a procedure to C. Enums and constants can't be exported. The optional argument is a string containing the C identifier. If the argument is missing, the C name is the Nimrod identifier exactly as spelled:

proc callme(formatstr: cstring) {.exportc: "callMe", varargs.}

Note that this pragma is somewhat of a misnomer: Other backends will provide the same feature under the same name.

Extern pragma

Like exportc or importc, the extern pragma affects name mangling. The string literal passed to extern can be a format string:

proc p(s: string) {.extern: "prefix$1".} =
  echo s

In the example the external name of p is set to prefixp.

Bycopy pragma

The bycopy pragma can be applied to an object or tuple type and instructs the compiler to pass the type by value to procs:

type
  TVector {.bycopy, pure.} = object
    x, y, z: float

Byref pragma

The byref pragma can be applied to an object or tuple type and instructs the compiler to pass the type by reference (hidden pointer) to procs.

Varargs pragma

The varargs pragma can be applied to procedures only (and procedure types). It tells Nimrod that the proc can take a variable number of parameters after the last specified parameter. Nimrod string values will be converted to C strings automatically:

proc printf(formatstr: cstring) {.nodecl, varargs.}

printf("hallo %s", "world") # "world" will be passed as C string

Union pragma

The union pragma can be applied to any object type. It means all of the object's fields are overlaid in memory. This produces a union instead of a struct in the generated C/C++ code. The object declaration then must not use inheritance or any GC'ed memory but this is currently not checked.

Future directions: GC'ed memory should be allowed in unions and the GC should scan unions conservatively.

Packed pragma

The packed pragma can be applied to any object type. It ensures that the fields of an object are packed back-to-back in memory. It is useful to store packets or messages from/to network or hardware drivers, and for interoperability with C. Combining packed pragma with inheritance is not defined, and it should not be used with GC'ed memory (ref's).

Future directions: Using GC'ed memory in packed pragma will result in compile-time error. Usage with inheritance should be defined and documented.

Unchecked pragma

The unchecked pragma can be used to mark a named array as unchecked meaning its bounds are not checked. This is often useful when one wishes to implement his own flexibly sized arrays. Additionally an unchecked array is translated into a C array of undetermined size:

type
  ArrayPart{.unchecked.} = array[0..0, int]
  MySeq = object
    len, cap: int
    data: ArrayPart

Produces roughly this C code:

typedef struct {
  NI len;
  NI cap;
  NI data[];
} MySeq;

The bounds checking done at compile time is not disabled for now, so to access s.data[C] (where C is a constant) the array's index needs needs to include C.

The base type of the unchecked array may not contain any GC'ed memory but this is currently not checked.

Future directions: GC'ed memory should be allowed in unchecked arrays and there should be an explicit annotation of how the GC is to determine the runtime size of the array.

Dynlib pragma for import

With the dynlib pragma a procedure or a variable can be imported from a dynamic library (.dll files for Windows, lib*.so files for UNIX). The non-optional argument has to be the name of the dynamic library:

proc gtk_image_new(): PGtkWidget
  {.cdecl, dynlib: "libgtk-x11-2.0.so", importc.}

In general, importing a dynamic library does not require any special linker options or linking with import libraries. This also implies that no devel packages need to be installed.

The dynlib import mechanism supports a versioning scheme:

proc Tcl_Eval(interp: pTcl_Interp, script: cstring): int {.cdecl,
  importc, dynlib: "libtcl(|8.5|8.4|8.3).so.(1|0)".}

At runtime the dynamic library is searched for (in this order):

libtcl.so.1
libtcl.so.0
libtcl8.5.so.1
libtcl8.5.so.0
libtcl8.4.so.1
libtcl8.4.so.0
libtcl8.3.so.1
libtcl8.3.so.0

The dynlib pragma supports not only constant strings as argument but also string expressions in general:

import os

proc getDllName: string =
  result = "mylib.dll"
  if existsFile(result): return
  result = "mylib2.dll"
  if existsFile(result): return
  quit("could not load dynamic library")

proc myImport(s: cstring) {.cdecl, importc, dynlib: getDllName().}

Note: Patterns like libtcl(|8.5|8.4).so are only supported in constant strings, because they are precompiled.

Note: Passing variables to the dynlib pragma will fail at runtime because of order of initialization problems.

Note: A dynlib import can be overriden with the --dynlibOverride:name command line option. The Compiler User Guide contains further information.

Dynlib pragma for export

With the dynlib pragma a procedure can also be exported to a dynamic library. The pragma then has no argument and has to be used in conjunction with the exportc pragma:

proc exportme(): int {.cdecl, exportc, dynlib.}

This is only useful if the program is compiled as a dynamic library via the --app:lib command line option.

Threads

To enable thread support the --threads:on command line switch needs to be used. The system module then contains several threading primitives. See the threads and channels modules for the thread API.

Nimrod's memory model for threads is quite different than that of other common programming languages (C, Pascal, Java): Each thread has its own (garbage collected) heap and sharing of memory is restricted to global variables. This helps to prevent race conditions. GC efficiency is improved quite a lot, because the GC never has to stop other threads and see what they reference. Memory allocation requires no lock at all! This design easily scales to massive multicore processors that will become the norm in the future.

Thread pragma

A proc that is executed as a new thread of execution should be marked by the thread pragma. The compiler checks procedures marked as thread for violations of the no heap sharing restriction: This restriction implies that it is invalid to construct a data structure that consists of memory allocated from different (thread local) heaps.

A thread proc is passed to createThread or spawn and invoked indirectly; so the thread pragma implies procvar.

GC safety

We call a proc p GC safe when it doesn't access any global variable that contains GC'ed memory (string, seq, ref or a closure) either directly or indirectly through a call to a GC unsafe proc.

The gcsafe annotation can be used to mark a proc to be gcsafe otherwise this property is inferred by the compiler. Note that noSideEfect implies gcsafe. The only way to create a thread is via spawn or createThead. spawn is usually the preferable method. Either way the invoked proc must not use var parameters nor must any of its parameters contain a ref or closure type. This enforces the no heap sharing restriction.

Routines that are imported from C are always assumed to be gcsafe. To enable the GC-safety checking the --threadAnalysis:on command line switch must be used. This is a temporary workaround to ease the porting effort from old code to the new threading model. In the future the thread analysis will always be performed.

Future directions:

Threadvar pragma

A global variable can be marked with the threadvar pragma; it is a thread-local variable then:

var checkpoints* {.threadvar.}: seq[string]

Due to implementation restrictions thread local variables cannot be initialized within the var section. (Every thread local variable needs to be replicated at thread creation.)

Threads and exceptions

The interaction between threads and exceptions is simple: A handled exception in one thread cannot affect any other thread. However, an unhandled exception in one thread terminates the whole process!

Spawn

Nimrod has a builtin thread pool that can be used for CPU intensive tasks. For IO intensive tasks the upcoming async and await features should be used instead. spawn is used to pass a task to the thread pool:

proc processLine(line: string) =
  # do some heavy lifting here:
  discard

for x in lines("myinput.txt"):
  spawn processLine(x)
sync()

Currently the expression that spawn takes is however quite restricted:

Taint mode

The Nimrod compiler and most parts of the standard library support a taint mode. Input strings are declared with the TaintedString string type declared in the system module.

If the taint mode is turned on (via the --taintMode:on command line option) it is a distinct string type which helps to detect input validation errors:

echo "your name: "
var name: TaintedString = stdin.readline
# it is safe here to output the name without any input validation, so
# we simply convert `name` to string to make the compiler happy:
echo "hi, ", name.string

If the taint mode is turned off, TaintedString is simply an alias for string.

Generated: 2014-07-29 21:52:14 UTC